

This PDF file contains the appendixes to U.S. Geological Survey Water-Resources Investigations Report 98-4049

Relations of Surface-Water Quality to Streamflow in the Hackensack, Passaic, Elizabeth, and Rahway River Basins, New Jersey, Water Years 1976-93

For additional information write to:
District Chief
U.S. Geological Survey
810 Bear Tavern Rd., Suite 206
West Trenton, NJ 08628

-Emaildc_nj@usgs.gov

-On the World Wide Web-http://nj.usgs.gov/>

For information on using Adobe Acrobat® Reader, please refer to the PDF documents installed with the Reader.

RELATIONS OF SURFACE-WATER QUALITY TO STREAMFLOW IN THE HACKENSACK, PASSAIC, ELIZABETH, AND RAHWAY RIVER BASINS, NEW JERSEY, WATER YEARS 1976-93

By Debra E. Buxton, Kathryn Hunchak-Kariouk, and R. Edward Hickman

U.S. Geological Survey

Water-Resources Investigations Report 98-4049

APPENDIXES

Prepared in cooperation with the

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

West Trenton, New Jersey 1998

Description of Appendixes

Appendixes 1-18 illustrate the relations of surface-water quality to streamflow by constituent for each station with three graphs. The first graph shows the relation of concentration to streamflow. Plots of concentration to streamflow indicate how instream constituent concentrations vary with streamflow, but do not indicate the relative contributions of constant and intermittent sources. Data for stations on streams that drain developed areas show greater scatter, especially for inorganic constituents such as sodium, chloride, and hardness. Relations between concentration and streamflow were developed by using (1) all measurements, (2) only measurements collected during the growing season, and (3) only measurements collected during the nongrowing season. Growing-season measurements are shown with open symbols, and nongrowing-season measurements are shown with crisscrossed, shaded symbols. Different symbols are used to show uncensored and censored values. For each group of measurements, the number of observations and values of slope and intercept are listed, and a regression line is shown when the slope of concentration to streamflow is different from zero at the 0.05 significance level. A seasonal dependency is indicated when the relations of concentration to streamflow for the growing- and nongrowing-season measurements are different. The 75th and 25th percentiles of the flow duration also are indicated.

The second graph shows the relation of load to streamflow. The regression slope of load to streamflow indicates the relative contributions of constant and intermittent sources to the instream load. The steeper the slope, the greater the contribution during increased streamflow from storm runoff (intermittent sources). Relations between load and streamflow were developed using all measurements. Different symbols are used to show uncensored and censored values. The number of observations and values of slope and intercept are shown, and a regression line is drawn when the slope is different from zero at the 0.05 significance level. A smoothed relation between load and streamflow is shown when there are 10 or more observations. The 75th and 25th percentiles of the flow duration also are indicated. The relations of load to streamflow for dissolved oxygen at saturation and fecal coliform bacteria are not shown because loads are not calculated for these constituents.

The third graph shows the trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows can indicate changes over time in the contributions from intermittent and constant sources, respectively. Positive trends during high flows indicate an increase in the storm runoff contributions over time, whereas negative trends indicate a decrease in the storm runoff contributions. Positive trends during low flows indicate an increase in the contributions from point sources and ground water over time, whereas negative trends indicate a decrease in the contributions from point sources and ground water. Measurements during low flows are shown with open symbols, and measurements during high flows are shown with crisscrossed, shaded symbols. Different symbols are used to show uncensored and censored values. The numbers of observations and water years during which at least one measurement was made are shown for each group of measurements. Trends are indicated by regression lines and slope values when the seasonal Kendall tau value is significant.

Navigation Tips

1. Start at page 5 of the PDF file. This page lists the appendixes and the constituents they describe.

Appendixes–Relation concentration and load trends in concentra

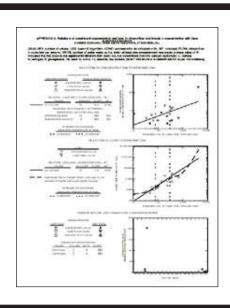
Appendix 1 ------ Alkalinity

Appendix 2 ----- Hardness

Appendix 3 ----- Total organic carbon

Appendix 4 ----- Suspended sediment

Appendix 5 ----- Dissolved solids


2. Move the cursor to the name of the desired constituent and click the mouse button to jump to the selected appendix.

A list of stations will appear.

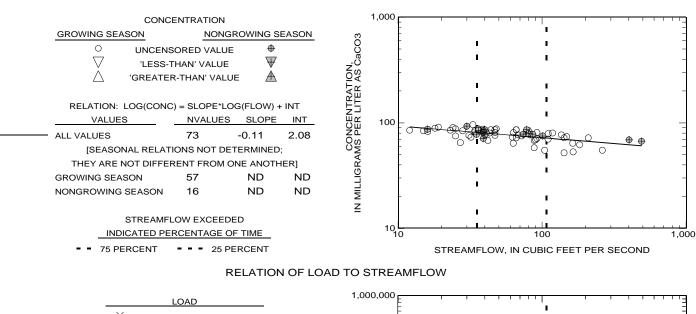
Appendi Fraction of dissolved ox

Station number	Station name
01377000	Hackensack River at River
01379000	Passaic River near Millin
01379500	Passaic River near Chatha
01380500	Rockaway River above Res
01381200	Rockaway River at Pine Br

3. At the station list, select the desired station, move the cursor to the station, and click the mouse button to jump to the data.

Appendixes–Relations of constituent concentration and load to streamflow and trends in concentration with time

Appendix 1 Alkalinity
Appendix 2 Hardness
Appendix 3Total organic carbon
Appendix 4 Suspended sediment
Appendix 5 Dissolved solids
Appendix 6 Dissolved sodium
Appendix 7 Dissolved chloride
Appendix 8 Dissolved oxygen
Appendix 9Fraction of dissolved oxygen at saturation
Appendix 10 Total phosphorus
Appendix 11 Total nitrogen
Appendix 12 Total nitrate plus nitrite
Appendix 13 Total nitrite
Appendix 14 Total ammonia plus organic nitrogen
Appendix 15 Total ammonia
Appendix 16Total boron
Appendix 17 Total lead
Appendix 18 Fecal coliform bacteria


Appendix 1 Alkalinity

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

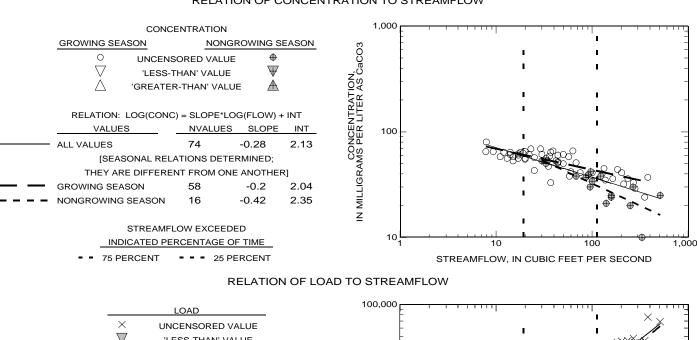
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 73 0.89 2.81	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000 = 10,
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	1,000 10 100 1,000 1,000 STREAMELOW IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

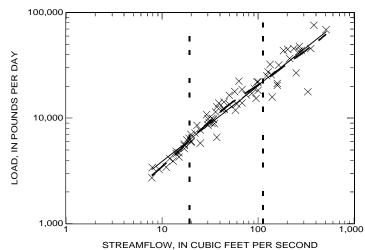

CONCENTRATION	100	
LOW FLOW HIGH FLOW O		
○ UNCENSORED VALUE	80	
☐ YLESS-THAN' VALUE ☐ Y ZO Y		
☐ 'GREATER-THAN' VALUE ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐		•
TRENDS IN CONCENTRATION	60	
VALUES NVALUES NWYS SLOPE OU		₩ ₩
LOW FLOW	40	_
HIGH FLOW 14 7 ND S		
G.		
N MILLIG	20	-
-	0	
	U	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

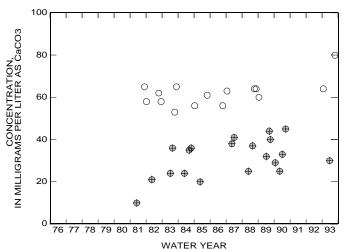
RELATION OF CONCENTRATION TO STREAMFLOW



'LESS-THAN' VALUE

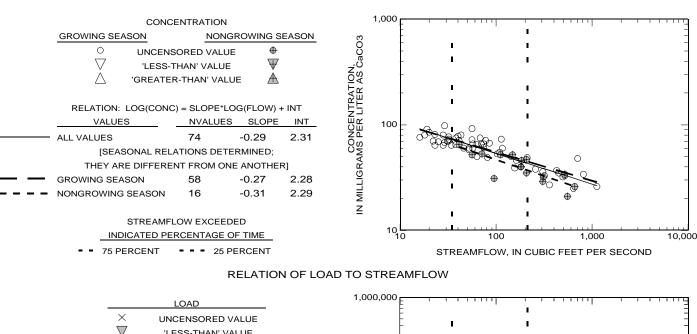
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES SLOPE **VALUES** ALL VALUES

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
	GREATER-THAN' VALU	e 🕭


TRENDS IN CONCENTRATION						
VALUES	NWYS	SLOPE				
LOW FLOW	15	9	ND			
HIGH FLOW	20	10	ND			

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

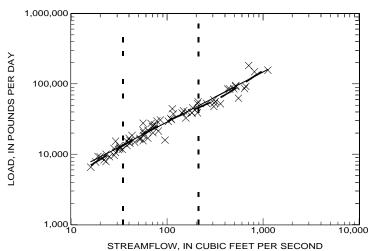
RELATION OF CONCENTRATION TO STREAMFLOW

'LESS-THAN' VALUE

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

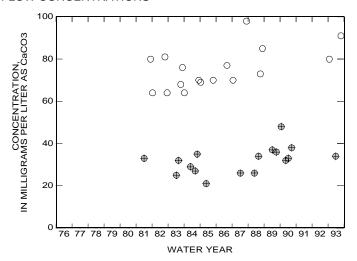
VALUES NVALUES SLOPE INT


ALL VALUES 74 0.71 3.04

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

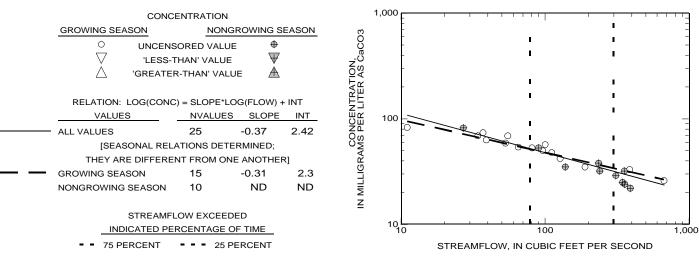
STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME


75 PERCENT - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION							
LOW FLOW	<u>H</u>	IGH FLOW					
0	UNCENSORED VALUE	+					
∇	'LESS-THAN' VALUE	$\overline{\Psi}$					
<u> </u>	GREATER-THAN' VALUE	\triangle					
		₩ .A					


TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	17	9	ND				
HIGH FLOW	17	9	ND				

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

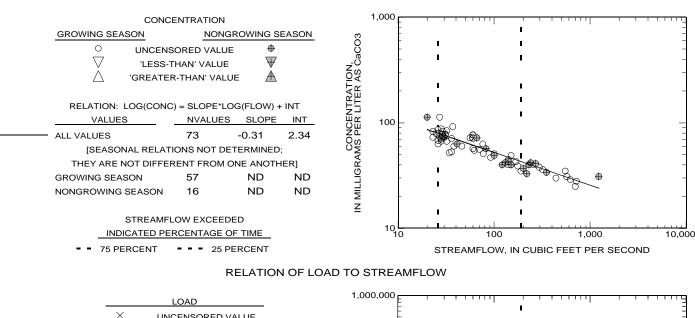
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

×	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE	<u> </u>	100,000		
RELATION: LOG((LOAD) = SLOPE*LOG(FL	OW) + INT	Ä.	X	1
VALUES	NVALUES SLC	PE INT	8		
ALL VALUES	25 0.6	3.15	Ω N 10,000 –	•	
	ON BETWEEN LOAD AND ARE 10 OR MORE VALUE:		D, IN POL	<u>'</u>	! !
STRE	EAMFLOW EXCEEDED		0.	•	-
INDICATE	ED PERCENTAGE OF TIM	IE_	_	•	Ī
75 PERCE	NT = = = 25 PERCE	NT		ı	i
			1,000	100	1.
				STREAMFLOW, IN CUBIC FEET F	PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

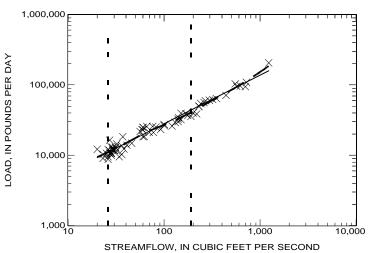

CONCENTRATION			.00	'	1 1	1	1		'	'	1		' '		'			
LOW FLOW	HIGH FLOW	Ö																
UNCENSORED VALUE	<u>+</u>	ION, AS CaCO3	80	_												С)	0
'LESS-THAN' VALUE	À	NO VS (0								
	\triangle	R A									_					0		0
		CONCENTRAT	60	_						(0							_
TRENDS IN CONCENTRATIO		N L									0							
	SLOPE	SE																
LOW FLOW 8 5	ND	ညွှန	40	-														-
HIGH FLOW 7 3	ND	ZA.															⊕€	Þ
		5									₩							⊕
		MILL	20	_							₩							-
		Z																
		_	0															
			0	76 77	78	79 80	81	82	83 84	85	86	87	88	89	90	91 9	92	93

WATER YEAR

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

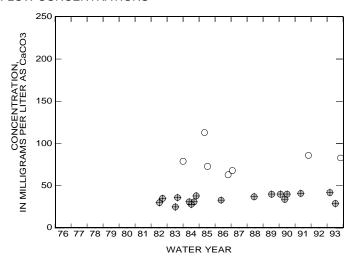
RELATION OF CONCENTRATION TO STREAMFLOW



UNCENSORED VALUE 'LESS-THAN' VALUE

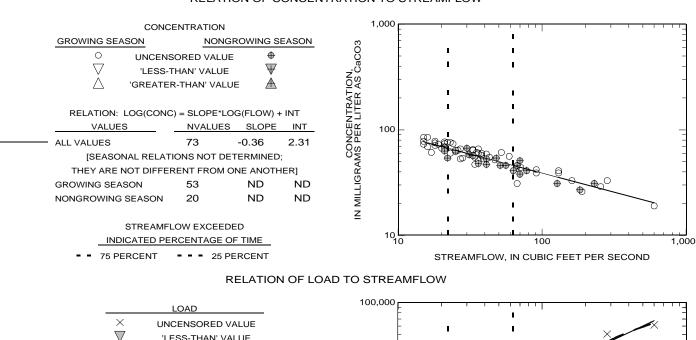
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES **VALUES** SLOPE ALL VALUES

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION	
LOW FLOW	1	HIGH FLOW
0	UNCENSORED VALUE	•
\vee	'LESS-THAN' VALUE	\forall
\triangle	'GREATER-THAN' VALU	E A


TREINDS IN CONCENTRATION										
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	7	6	ND							
HIGH FLOW	17	9	ND							

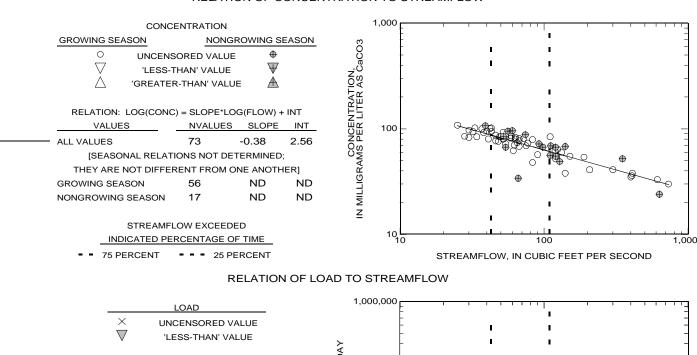
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD		100,000	<u> </u>			
$\mathop{\triangledown}^{\times}$	UNCENSORED VALUE 'LESS-THAN' VALUE	>	:	1	; ;	×	-
RELATION: LOG(VALUES	LOAD) = SLOPE*LOG(FLOW) NVALUES SLOPE) + INT & W	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	-
ALL VALUES	73 0.64	3.05	10,000 —				
	ON BETWEEN LOAD AND FLO RE 10 OR MORE VALUES)		- - -		1		-
	EAMFLOW EXCEEDED	OP 0		1	1		-
75 PERCEI	NT 25 PERCENT		1,000	I	100		1,000
			10	STREAMFL	OW, IN CUBIC FEE		1,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		.00	' '		1 1	1	1 1	'	1	' '	- 1		'
LOW FLOW	HIGH FLOW	e O					_						
O UNCENSORED VALU	JE +	08 O	_				0	_					
V 'LESS-THAN' VALUE	≣ ₩ zi	Ŋ,			_ 0	0	$^{\circ}$	9	()		0	
△ 'GREATER-THAN' VAL	UE 🕭 🛱	∢ ⊻			ુ જુ _પ		$\tilde{}$						
	2	Ë 60	-		С)	0						_
TRENDS IN CONCENTRA	ATION	□			0						Φ.		
VALUES NVALUES NWYS	S SLOPE Ö	Ä						⊕			+	•	
LOW FLOW 18 9	HIGH FLOW IF IF IF IF IF IF IF IF	<u>v</u> 40	_		\oplus	Φ^{\P}	⊕	Ф		+	⊕		<u>⊕</u>
HIGH FLOW 21 11	ND	₹ S				+		-	⊕		₩		⊕
	Č	<u> </u>				# ⊕					TAIP CHAI		Ψ
	<u> </u>	9 20 W	_						4)			-
		∑ 7											
	•	_											
		0											ليا
			76 77	78 79 80 8	81 82	83 84	85	86 8	7 88	89	90 9	1 92	93

WATER YEAR

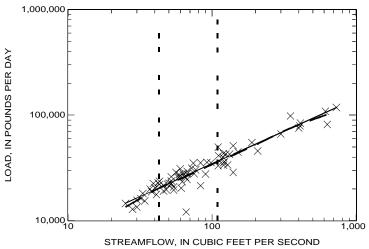
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

 RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

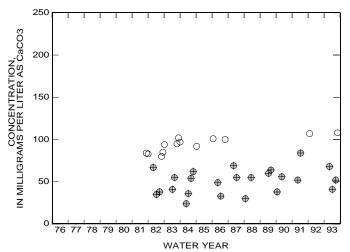
 VALUES
 NVALUES
 SLOPE
 INT


 ALL VALUES
 73
 0.62
 3.3

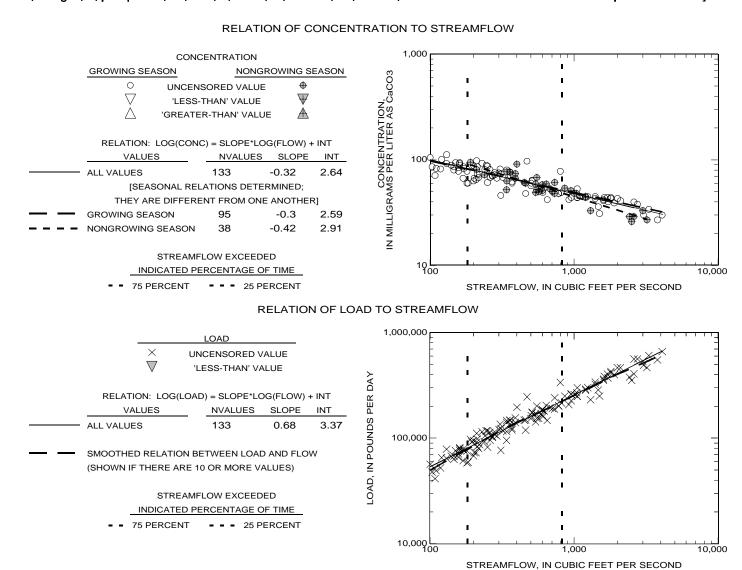
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME


75 PERCENT - 25 PERCENT

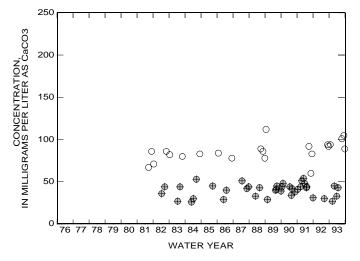
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	+
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
<u> </u>	GREATER-THAN' VALU	e 🕭

TRENDS IN CONCENTRATION										
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	13	7	ND							
HIGH FLOW	24	10	ND							

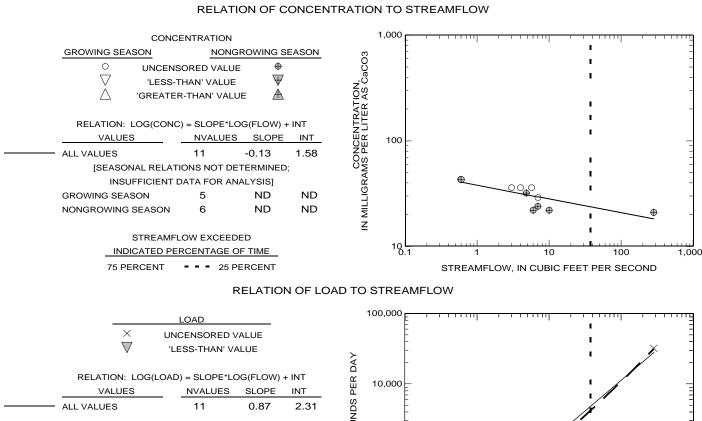
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION										
LOW FLOW			HIGH FLOW							
Ο υ	NCENSORE	D VALUE	⊕							
√ 'LESS-THAN' VALUE √										
$ riangle$ 'GREATER-THAN' VALUE $ extcal{A}$										
TRENDS IN CONCENTRATION										
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	22	10	ND							

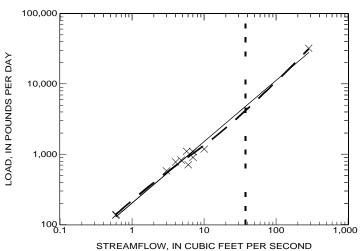
12


ND

HIGH FLOW

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

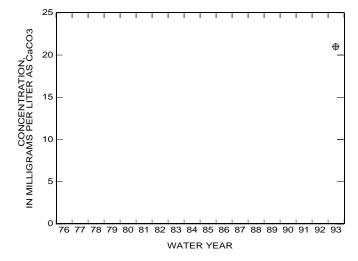


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

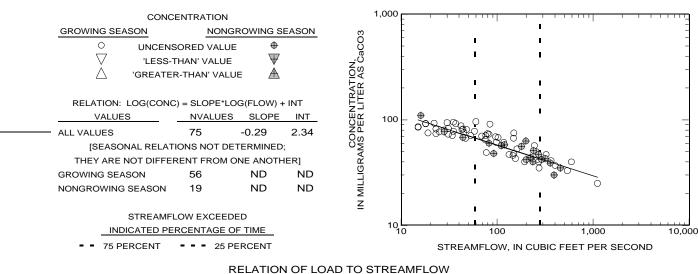
75 PERCENT - - 25 PERCENT



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION										
LOW FLOW			HIGH FLOW							
Ο υ	NCENSORE	D VALUE	+							
abla 'LESS-THAN' VALUE $ abla$										
△ 'GREATER-THAN' VALUE ⚠										
TRENDS IN CONCENTRATION										
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	0	0	ND							

ND


HIGH FLOW

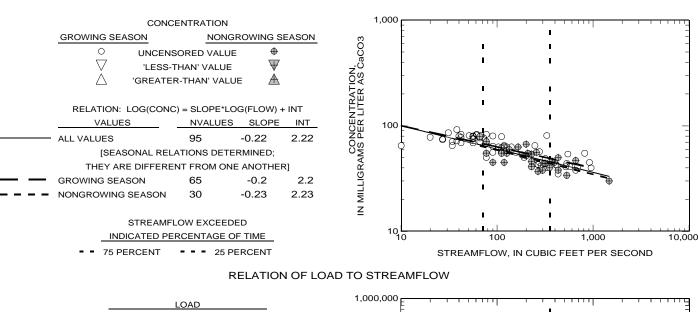
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD		1,000,000	- 	- 	
×	UNCENSORED VALUE		Ē	ı	I	=
V	'LESS-THAN' VALUE	>	÷	I	ı	-
RELATION: LOG(I	LOAD) = SLOPE*LOG(FLOW)	+ INT	100,000 E	I	·	
VALUES	NVALUES SLOPE			1	~ × *** ***	3
ALL VALUES	75 0.71	3.07		XX	% **	=
— SMOOTHED RELATION	ON BETWEEN LOAD AND FLO	ow (* ``	-
(SHOWN IF THERE A	RE 10 OR MORE VALUES)	<u> </u>	10,000			늴
STRE	AMFLOW EXCEEDED	(5 -		•	=
INDICATE	D PERCENTAGE OF TIME	-	-	<u>.</u>	ī	-
= = 75 PERCEN	NT 25 PERCENT			ı	Ī	-
			1,000	100	1,000	10,000
				STREAMFLOW.	, IN CUBIC FEET PER	R SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		200		1 1	1 1	1 1 1			١
LOW FLOW	HIGH FLOW 0								
O UNCENSORED VALUE	ф ЭаС	200						_	1
'LESS-THAN' VALUE	₩ NOS								
△ 'GREATER-THAN' VALUI	DX DAIS DE PROPERTIES AND SOIN WHAT DAIS DE PROPERTIES AND CACOOS								
	TE.	150	_					_	4
TRENDS IN CONCENTRAT	NOI.								
VALUES NVALUES NWYS	SLOPE ÖÜ			\circ					
LOW FLOW 28 12	ND OS	100	_	0		n 0	<u>۵</u> 0	_	-
HIGH FLOW 11 7	ND §			8	6 6	8000	G	° % c	k
	99			9	8 %	0	´ O	0	
	글	50	_		4	→ Φ	⊕	• •	1
	N MILLIG				•)	+	Φ Φ	
	=				Ψ				
		0	76 77 78 79 8	0 81	32 83 84	4 85 86 87	88 89 90	91 92 93	J

WATER YEAR

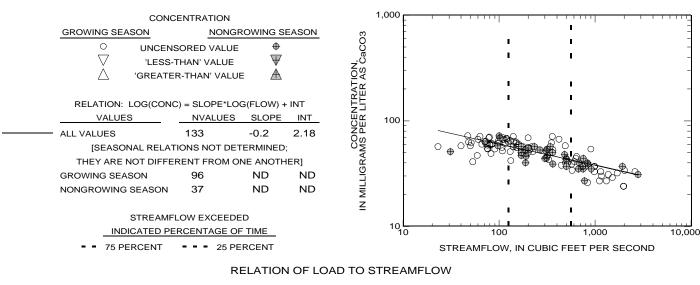
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE		1,000,000
V 'LESS-THAN' VALUE	DAY	
RELATION: $LOG(LOAD) = SLOPE*LOG(FLOW)$	HINT E	Y 100,000 -
VALUES NVALUES SLOPE		
ALL VALUES 95 0.78	2.95 SON	
SMOOTHED RELATION BETWEEN LOAD AND FLO	ow Q	
(SHOWN IF THERE ARE 10 OR MORE VALUES)	ð Z	10,000
STREAMFLOW EXCEEDED	Q.	
INDICATED PERCENTAGE OF TIME	_	·
75 PERCENT 25 PERCENT		
		1,000 10 100 1,000
		STREAMFLOW, IN CUBIC FEET PER SECOND

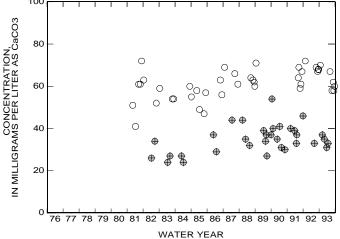
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	100	~[
LOW FLOW O UNCENSORED VALUE VILESS-THAN' VALUE O GREATER-THAN' VALUE TRENDS IN CONCENTRATION VALUES NVALUES NVAL	80	
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE VALUES NVALUES NWYS SLOPE	60	
2	40	, 40 XH
IN MILLIG	20	20 –
_	0	0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

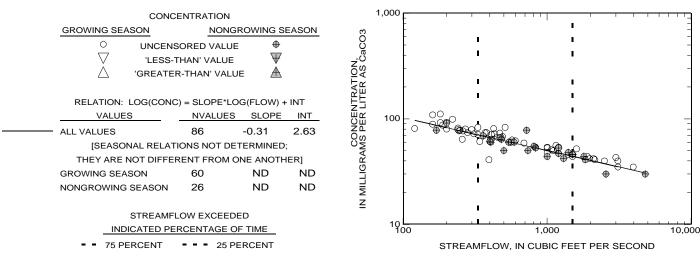
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	>	1,000,000	1 1		*
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) +	INT	100,000			
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	S LOAD, IN POU	10,000		! !	
INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT		1,000	100	1,000 N CUBIC FEET PER	10,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


					100						
	CONCENTR	ATION			100		1	1	1	1	-
LOW FLOW			HIGH FLOW	03							
Ο υ	NCENSORE	D VALUE	⊕	aC	80	_					
∇	LESS-THAN'	VALUE	$\overline{\Psi}$	S, S	00						\circ
△ 'GF	REATER-THA	N' VALUI	E ♠	F.∀ P.∀							O
				TER	60	_				(P
TREN	IDS IN CONC	ENTRAT	ION	55							
VALUES	NVALUES	NWYS	SLOPE	NCE PER						0	
LOW FLOW	42	12	ND	CON	40	_				C)
HIGH FLOW	33	11	ND	OM M							
				G R							4
				j	-00						,

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY
01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

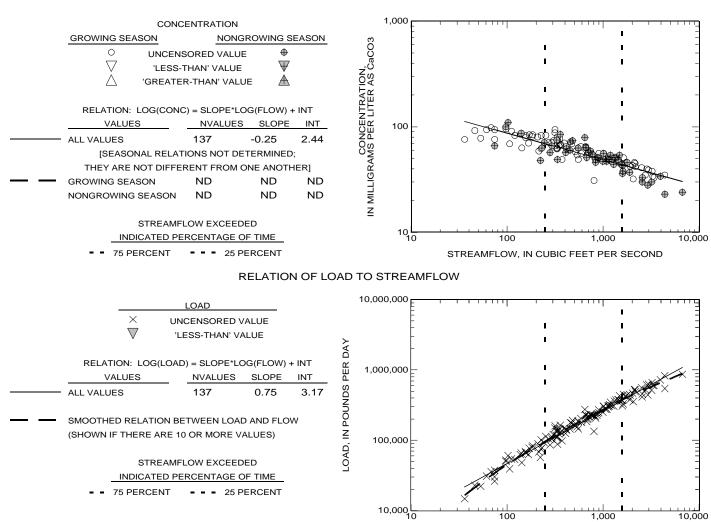
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

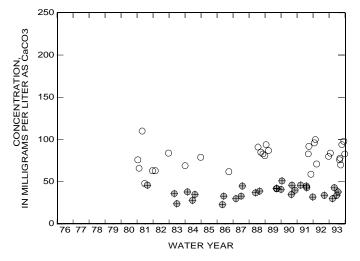
LOAD	1,000,000
X UNCENSORED VALUE▼ 'LESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	
— ALL VALUES 86 0.69 3.5 — SMOOTHED RELATION BETWEEN LOAD AND FLOW	37 89 100,000 X X X X X X X X X X X X X X X X X
(SHOWN IF THERE ARE 10 OR MORE VALUES)	g ×
STREAMFLOW EXCEEDED	-
INDICATED PERCENTAGE OF TIME	
75 PERCENT 25 PERCENT	I I
	10,000 1,000 10,0
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	200	, , , , , , , , , , , , , , , , , , ,
LOW FLOW HIGH FLOW	Ö	
○ UNCENSORED VALUE ♥ VLESS-THAN' VALUE ▼	AS CaC AS CaC	_
/\ GREATER-THAN VALUE		
	MS PER LITER MS PER LITER 100	-
TRENDS IN CONCENTRATION	⊒	
VALUES NVALUES NWYS SLOPE C	ŽΨ̈́	
LOW FLOW 22 6 ND	<u>20</u> 100	0
HIGH FLOW 17 4 ND	≴	
	5	000
	J 50	
	Z	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

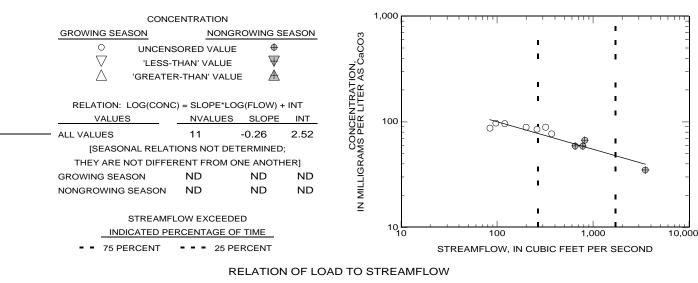
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
O U	NCENSORE	O VALUE	⊕
▽ ,	LESS-THAN	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	A
TREN	DS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	30	10	ND
HIGH FLOW	29	11	ND



STREAMFLOW, IN CUBIC FEET PER SECOND

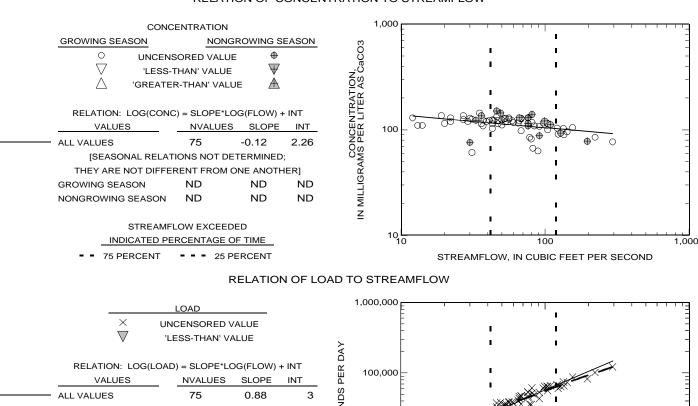
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY
01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

			1,000,000				
	LOAD	_	F				=
×	UNCENSORED VALUE		ļ.		Ī	· //	7
∇	'LESS-THAN' VALUE		> -		i		-
RELATION: LOG	(LOAD) = SLOPE*LOG(FL	OW) + INT	R D.				=
VALUES	NVALUES SLC	PE INT	PER -				=
ALL VALUES	11 0.7	74 3.25	DS			i	
SMOOTHED RELATI	ON BETWEEN LOAD AND) FLOW	100,000	<i></i>			=
(SHOWN IF THERE A	ARE 10 OR MORE VALUE	S)	Z Ú		_	1	-
STR	EAMFLOW EXCEEDED		- OA	, ,	1	Ī	-
INDICAT	ED PERCENTAGE OF TIM	<u>1E</u>	_				-
= = 75 PERCE	NT = = 25 PERCE	ENT			1	1	
			10,000	100	1,000)	10,000
				STREAMFLOW,	IN CUBIC FEET PER	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

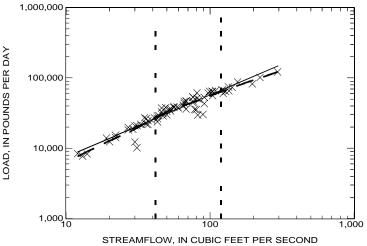

CONCENTRATION	100	7
LOW FLOW HIGH FLOW O		00
LOW FLOW O UNCENSORED VALUE VILESS-THAN' VALUE O GREATER-THAN' VALUE O GREATER-THAN' VALUE □ GREATER-THAN' VALUE	80	
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE LOW FLOW 5 2 ND 050 VALUES NO 050 VALUES N	60	-
VALUES NVALUES NWYS SLOPE OÜ		
LOW FLOW 5 2 ND ON	40) -
HIGH FLOW 1 1 ND & & & & & & & & & & & & & & & & & &		•
MELL	20	-
Z		
	0)
	Ū	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

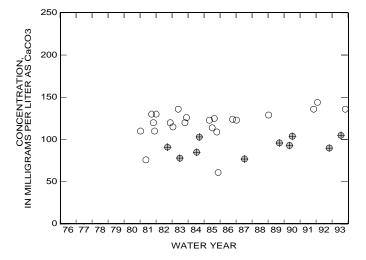
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW	1		HIGH FLOW
0	UNCENSORE	D VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
\triangle	'GREATER-THA	N' VALUE	A
TR	RENDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

10

8

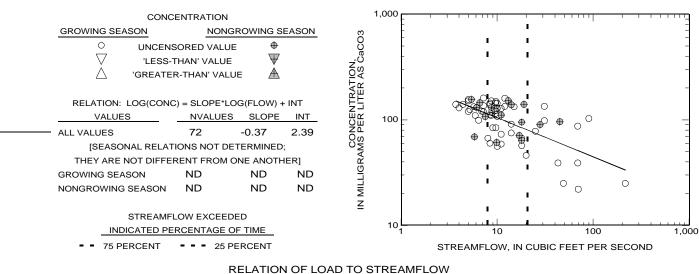
ND


ND

22

10

LOW FLOW


HIGH FLOW

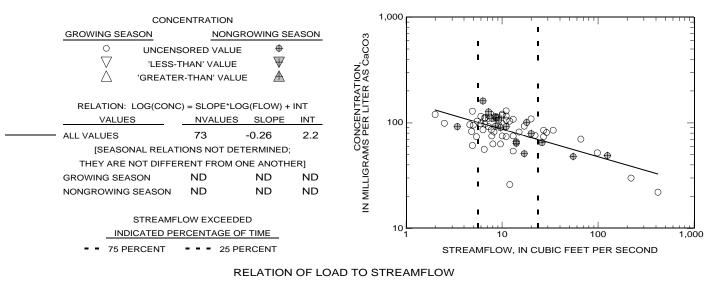
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD		100,000	- 	•	
× UNCENSORED VALUE		F	ī		=
V 'LESS-THAN' VALUE	>		- I	×	_
	, A	-		×	/× -
RELATION: $LOG(LOAD) = SLOPE*LOG(FLOW) + IN^{-1}$	١ ٢		Ī	$\mathbf{I} \times \mathbf{X}$	
VALUES NVALUES SLOPE IN	<u> </u>		1		1
——— ALL VALUES 72 0.63 3	.12		-	\times \times \times	
	.12 SON	10,000 —	<u>.</u> ×	×, / /	_
— SMOOTHED RELATION BETWEEN LOAD AND FLOW	Pol	E		× × ×	=
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z	F		<% ₁	<u> </u>
	Ď,	F		1	=
STREAMFLOW EXCEEDED	O.	-		-	-
INDICATED PERCENTAGE OF TIME	_	-	×	Ī	_
75 PERCENT 25 PERCENT			ı	Ī	
		1,000	10	100	1,000
			STREAMELOW	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			200	1 1	'		1	1 1	1	ı	1 1	1	1	1 1	1	
LOW FLOW			HIGH FLOW	03														
٥ ر	NCENSORE	D VALUE	⊕	CONCENTRATION, AMS PER LITER AS CaCO3	200	_												
Ŏ.	LESS-THAN	VALUE	$\overline{\Psi}$	NO.														
△ 'GI	REATER-THA	N' VALUI	■ ▲	AT R										0				
				7.E	150	L			_					ŏ			D C	, –
	IDS IN CONC			Ä Z Z				0	0					0		\oplus	Ø	
VALUES	NVALUES	NWYS	SLOPE	SA					(C	0	9	Ω					4
LOW FLOW	19	9	ND	SCO	100	_				. 4	, 0		_	+	₽	ФО		-
HIGH FLOW	12	9	ND	ZAN						Φ ,	₽		\oplus					
				5				0			*							
				IN MILLIG	50	_							_	_				-
				2								Φ.	0	⊕	Φ.			
				_				1	+			⊕			⊕			
					0	76 77 7	78 70	80.81	1 82	83 8	1 85	5 86	87	88 80	90	01	92 (33
						10 11 1	0 13	00 0	. 02	03 0	+ 00	, 30	01	00 03	, 30	01	J2 :	,,,

WATER YEAR

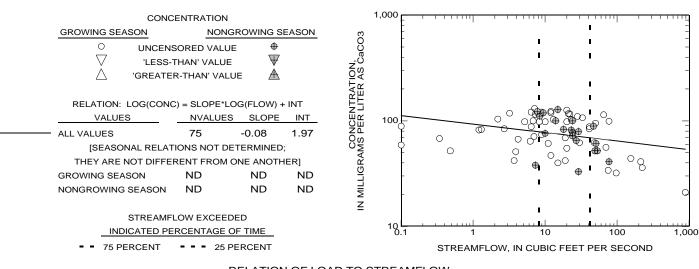
APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

			100 000			
	LOAD		100,000		•	
×	UNCENSORED VALUE		-			
∇	'LESS-THAN' VALUE		-		•	/ ×
		2	[•	. *	/-
RELATION: LOG	S(LOAD) = SLOPE*LOG(FLOW)	+ INT		ı		
VALUES	NVALUES SLOPE	INT G	ť þ	- Ī	· i . //	
ALL VALUES	73 0.74	2.93	3	•	×1×1/×	
		2	10,000			
SMOOTHED RELAT	ION BETWEEN LOAD AND FLO	ow S	2	ı 💥		
(SHOWN IF THERE	ARE 10 OR MORE VALUES)	Z	[× XXXX	∠ I	
		Ş	j ŀ	× 13	`	
STR	EAMFLOW EXCEEDED	Š	}	~ ***		
INDICAT	ED PERCENTAGE OF TIME	_	-	//××	ı	
= 75 PERCE	NT = = = 25 PERCENT			$\times \times $	I	
			1,000	10	100	
			1		100	1
				STREAMFLOW, IN	N CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	250	'		1 1 1		1 1		
LOW FLOW O UNCENSORED VALUE VILESS-THAN' VALUE O GREATER-THAN' VALUE	R AS CaCO3	_						_
TRENDS IN CONCENTRATION	7H 150	' -						_
VALUES NVALUES NWYS SLOPE LOW FLOW 10 8 NE	DW OOM 100	<u> </u>	0 0	0 0		0		_
HIGH FLOW 11 9 NE	LIGRA		O	+	#	Ф Ф	•	ФС
	Z Z			⊕	⊕	Ф Ф	⊕	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 1. Relations of constituent concentration and load to streamflow and trends in concentration with time ALKALINITY 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

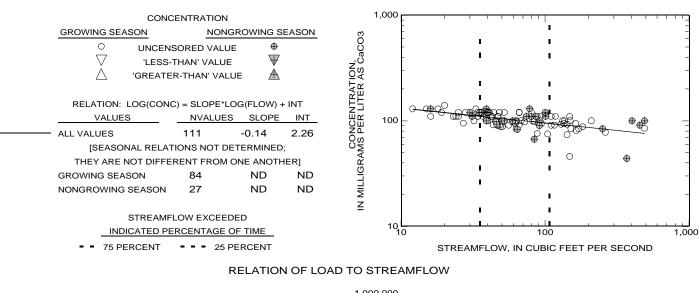
RELATION OF LOAD TO STREAMFLOW

	LOAD			1	,000,000	 		•	1 1 11111
$\overset{\times}{\triangledown}$	UNCENSORED V			≻	100,000		1	i	
RELATION: LOG	(LOAD) = SLOPE*LO	OG(FLOW)	+ INT	IR D	Ē		1		
VALUES	NVALUES	SLOPE	INT	В	10,000		1.	~ **	
— ALL VALUES	75	0.92	2.7	NDS	10,000			×	
- SMOOTHED RELATI	ON BETWEEN LOAD	O AND FLO	w	Pou	1,000 =			•	
(SHOWN IF THERE A	ARE 10 OR MORE V	ALUES)		Ž.	1,000		×	I	
STR	EAMFLOW EXCEED	ED		OAL	100 = 2	XX	1 1	I	
INDICAT	ED PERCENTAGE C	F TIME		_				ı	
75 PERCE	NT = = 25 P	ERCENT			*		1	ı	
					10	1	10	100	1,
						STREAM	FLOW, IN CUBIC	C FEET PER SE	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			1 1	ı	1 1	' '	'	1 1	1		- 1	1 1	1
LOW FLOW HIGH FLOW	Ö												
○ UNCENSORED VALUE ⊕	0 0 0 20	00 –											_
√ 'LESS-THAN' VALUE √	NO.												
△ 'GREATER-THAN' VALUE A A A A B C A C C C C C C C C C C C	CONCENTRATION, AMS PER LITER AS CaCO3												
	Ž₽ 15	50 —											_
TRENDS IN CONCENTRATION	ΝZ									0			
VALUES NVALUES NWYS SLOPE	3,5						0	P	()		0	
LOW FLOW 23 11 ND	<u> </u>	00 –				0		Ф О	0		#		_
HIGH FLOW 16 10 ND	S S				+	\$ ○		w 0	9			0	
	<u>6</u>					% 0	0			0		⊕ ⊕	
	; ⊑	50 –			0	_	0	#	₩	\oplus	4		_
	IN MILLIG				C	^O ⊕			0		Ψ	ф Ф	⊕
	₹								4)			
		0 76	77 7	8 70	80.8	21 82	83 8	1 85	86 87	98 9	80 00	01 0	2 03
		70	,,,,	0 79	00 6	1 02	00 0	+ 00	00 01	00 0	שם פנ	י פופ	12 93

WATER YEAR


Appendix 2 Hardness

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

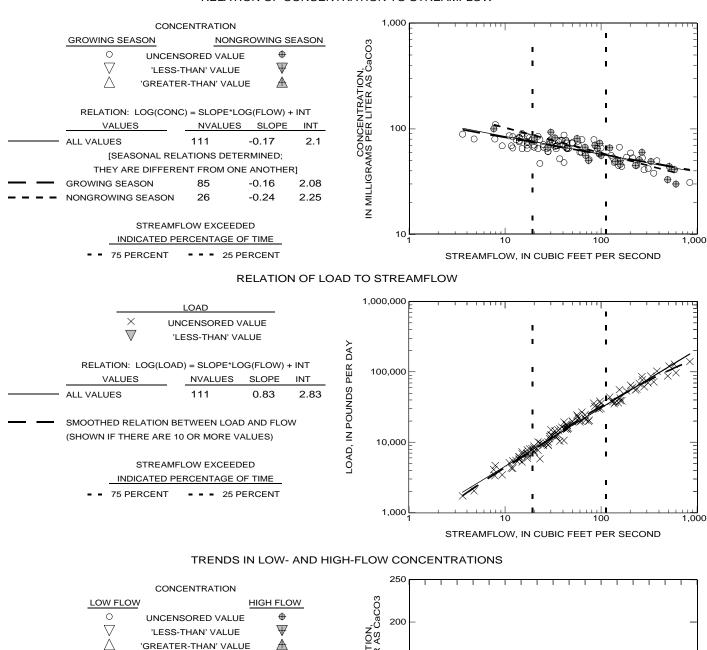
APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

1	LOAD		1,000,000	1 1 1 1 1 1 1 1	 	
	CENSORED VALUE SS-THAN' VALUE	> _{\delta}	-	1	` !	
RELATION: LOG(LOAD) VALUES) = SLOPE*LOG(FLOW) · NVALUES SLOPE	INT H	100,000	l l}	- ×	_
— ALL VALUES — SMOOTHED RELATION BE	111 0.86 TWEEN LOAD AND FLO	2.99 SQN N O	- - -		×	= = = = = = = = = = = = = = = = = = = =
(SHOWN IF THERE ARE 10	OR MORE VALUES)	AD, IN	10,000	ı	! !	
STREAMFL	OW EXCEEDED)	_ -	I		=
INDICATED PER	RCENTAGE OF TIME		-		1	-
■ ■ 75 PERCENT	25 PERCENT		_	i	1	-
			1,000	10	00	1,000
				STREAMFLOW, IN CUE	BIC FEET PER SECO	DND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			200	'	'	1			ı	1	1			1		- 1	- 1		1
LOW FLOW			HIGH FLOW	. °C																	
Ο υ	NCENSORE	D VALUE	⊕	CONCENTRATION,	200	L															
, ·	LESS-THAN'	VALUE	$\overline{\Psi}$	N. O.																	
△ 'GF	REATER-THA	'N' VALUE	■ ▲	ATIC R A																	
				TR/	150	L															_
TREN	DS IN CONC	ENTRAT	ION	Z –			0			0			ത							0	
VALUES	NVALUES	NWYS	SLOPE				_			oŏ	_		С					Φ.	~	0 C	
LOW FLOW	22	11	ND	0.5	100	_	⊕ .	∌ ,	, 0)	0	€	Q	D #E				⊕	0	4	+
HIGH FLOW	26	11	ND	Z Z			•	* €				P			Φ	+					
				<u> </u>								•)								
				<u> </u>	50	L	⊕											⊕			_
				Σ			Ψ											Ψ			
				2																	
					0	<u></u>															لي
						76	77 78	79	80	81	82 8	3 84	85	86	87	88	89	90 9	1 9	2 9)3

WATER YEAR

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

TRENDS IN CONCENTRATION

25

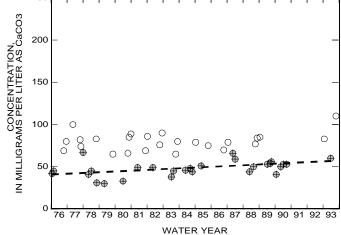
28

NVALUES NWYS

14

15

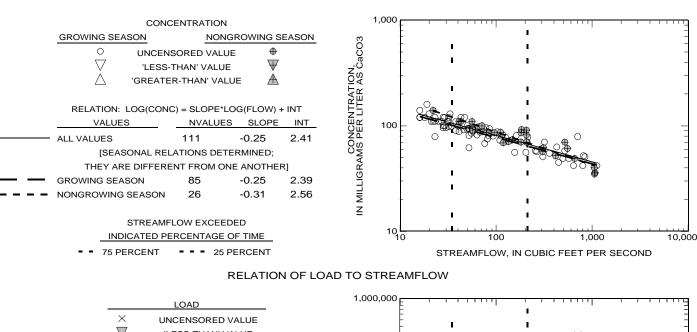
SLOPE


ND

0.92

VALUES

LOW FLOW


HIGH FLOW

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

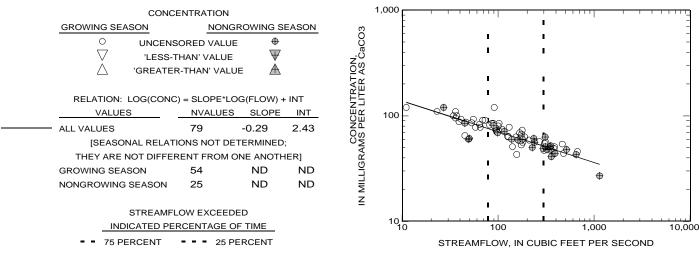
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD		1,000,000	- 	<u> </u>	
× UNCENSORED VALUE		E	I	I	3
V 'LESS-THAN' VALUE	>	Υ	Ī	1	-
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW	/) + INT	100,000	ı	. Mr. MX	
VALUES NVALUES SLOPE		<u>.</u>			=
ALL VALUES 111 0.75	3.14				=
SMOOTHED RELATION BETWEEN LOAD AND FL (SHOWN IF THERE ARE 10 OR MORE VALUES)	-OW (10,000		1 1	1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	- -	- CAL	1	1	= = = = = = = = = = = = = = = = = = = =
75 PERCENT 25 PERCENT	-	_	ı	1	-
		1,000	100	1,000	10,000
			STREAMFLOW, I	N CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	
LOW FLOW HIGH FLOW	03
○ UNCENSORED VALUE	νον ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ ΣΟΝ
√ 'LESS-THAN' VALUE √	z_{ω}^{2}
△ 'GREATER-THAN' VALUE A	L .
	조는 150 —
TRENDS IN CONCENTRATION	<u></u>
VALUES NVALUES NWYS SLOPE	
LOW FLOW 26 14 ND	MS PER LITERAL 1200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HIGH FLOW 26 14 0	√
	<u>z</u>


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

250

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

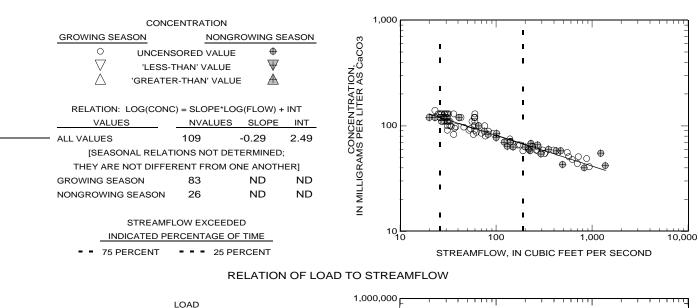
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD		1,000,000		•	
×	UNCENSORED VAL	UE	F			=
∇	'LESS-THAN' VALU	JE	> -	i	I	-
RELATION: LOG	i(LOAD) = SLOPE*LOG((FLOW) + INT	A			-
VALUES	NVALUES S	SLOPE INT	100,000 L	· 1		
ALL VALUES	79	0.71 3.16	S I			-
SMOOTHED RELATI	ON BETWEEN LOAD A	ND FLOW	Pod -		•	-
SHOWN IF THERE	ARE 10 OR MORE VALU	UES)	Z 10,000	× ·	i	-
STR	EAMFLOW EXCEEDED)	-0AE	· ·	1	
INDICAT	ED PERCENTAGE OF	TIME	-		Ī	
75 PERCE	NT 25 PER	RCENT	_	1	1	
			1,000	100	1,000	10,0
				STREAMELOW	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	:	250		ı	1 1	ı	1				1	ı	1 1	- 1		
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE ⊕ ✓ 'LESS-THAN' VALUE ₩ ✓ 'GREATER-THAN' VALUE	CONCENTRATION, MS PER LITER AS CaCO3	200 -	-													_
TRENDS IN CONCENTRATION	ENTRA R LITEF	150	-													-
VALUES NVALUES NWYS SLOPE LOW FLOW 21 11 ND HIGH FLOW 20 10 ND	CONCE AMS PEF	100 -	- C	0)	0			(0	()		0	0 0
	IN MILLIGR	50∉	₹⊕) + +	⊕ ⊘				•			⊕		4) 0
		0	76 7	7 78	79	80 8	1 82	2 83	8 84	85 8	6 87	7 88	89 9	90 9	1 92	93

WATER YEAR

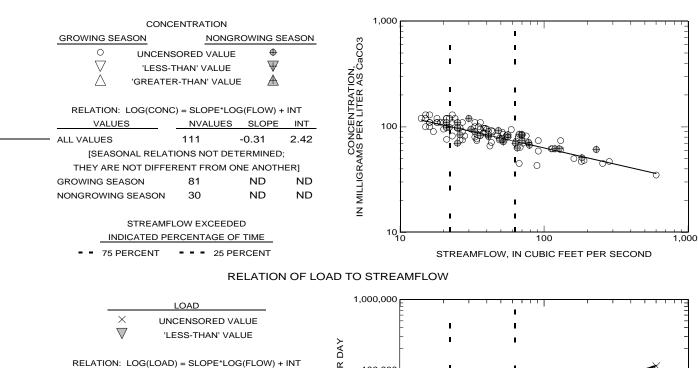
APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD		1,000,000			
× UNCENSORED VALUE VLESS-THAN' VALUE	>	-	1	! ! *	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE	INT 0		1		-
ALL VALUES 109 0.71	3.22	2 2 100,000 –		ı	_
SMOOTHED RELATION BETWEEN LOAD AND FL	.ow \overline{S}	Ž F	i I sa		3
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u> </u>	<u> </u>		× I	=
STREAMFLOW EXCEEDED	4	5 -	1	•	-
INDICATED PERCENTAGE OF TIME	-	-		I	-
75 PERCENT 25 PERCENT				ı	
		10,000	100	1,000	10,000
			STREAMFLOW, IN	CUBIC FEET PER S	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			200	'	1	ı	1 1		'	- 1					1		1	1	'	
LOW FLOW			HIGH FLOW	. 8																		
Ο υ	NCENSORE	D VALUE	⊕	SaC	200	L																
\triangle	LESS-THAN	VALUE	$\overline{\Psi}$	χ̈́ο																		
△ 'GF	REATER-THA	AN' VALUE	■ ▲	R A																		
				ZEZ	150	L																
TREN	IDS IN CONC	ENTRAT	ION	Z_								0								0		С
VALUES	NVALUES	NWYS	SLOPE	5,5			0						(0	Œ)						
LOW FLOW	8	7	ND	CONCENTRATION,	100	L																_
HIGH FLOW	32	14	0	ZAZ ZAZ																		
				<u>G</u>			Φ		#						⊕		⊕	Φ,	#	⊕	•	₽
				IN MILLIG	50		Ψ ∰	•			₩	+ +	**		₩		Ψ	+	TO THE			+
				Σ			4	•	0			Ψ										
				₹																		
					0	76	77 7	8 79	90	01	02	02 0	24	0E	96	97	00	90	00	01	03	03
						76	,,,,	0 /9	00	01	02	03 (54	00	00	01	00	09	90	91	92	93

WATER YEAR

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

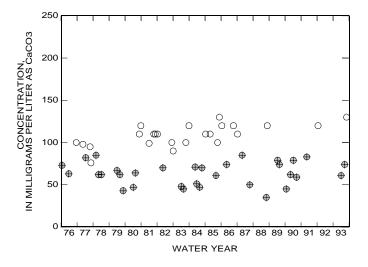
ALL VALUES


NVALUES

SLOPE

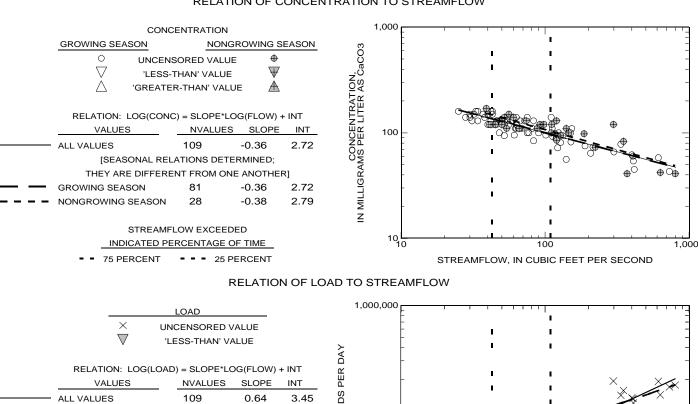
STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME


75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

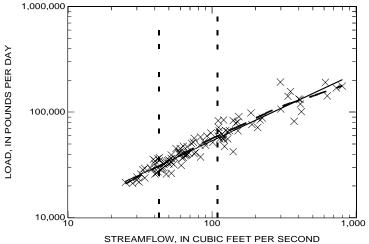
	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	\Phi
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle ,	GREATER-THAN' VALUE	A
TR	ENDS IN CONCENTRATI	ON


TRENDS IN CONCENTRATION												
VAL	JES	NVALUES	NWYS	SLOPE								
LOW F	LOW	24	12	ND								
HIGH I	FLOW	32	16	0								

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

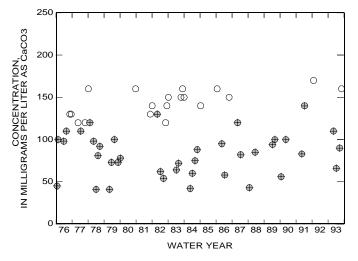
RELATION OF CONCENTRATION TO STREAMFLOW



SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

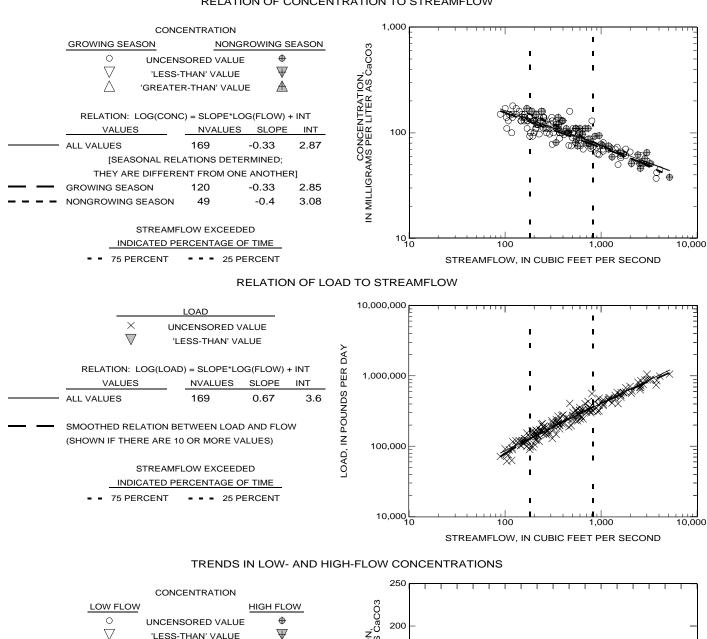
STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME


75 PERCENT - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION								
LOW FLOW	<u> Н</u>	IGH FLOW						
0	UNCENSORED VALUE	\oplus						
∇	'LESS-THAN' VALUE	$\overline{\Psi}$						
\triangle	'GREATER-THAN' VALUE	\triangle						


TRENDS IN CONCENTRATION										
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	19	11	ND							
HIGH FLOW	39	15	0							

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

Δ

VALUES

LOW FLOW

HIGH FLOW

'GREATER-THAN' VALUE

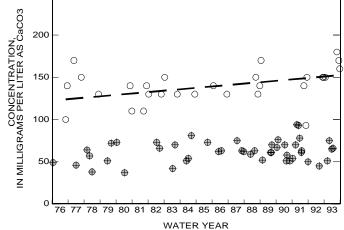
TRENDS IN CONCENTRATION

29

47

NVALUES NWYS

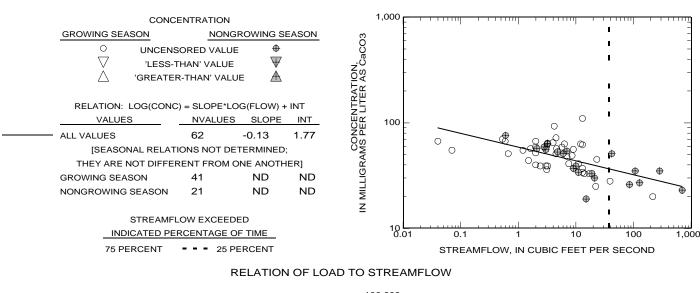
14


17

 \mathbb{A}

SI OPE

1.67


0

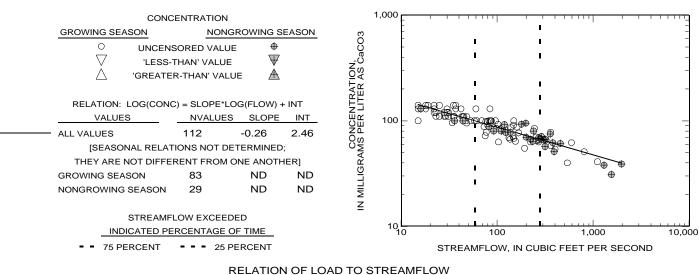
APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD		100,000		, , , , , , , , , , , , , , , , , , , 		
× UNCENSORED VALUE		Ē			i /	´ 🗐
V 'LESS-THAN' VALUE	DAY	-			ı / ×	-
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW	/) + INT ~	10,000		×	~ ^	
VALUES NVALUES SLOPE	INT H	F			1	=
ALL VALUES 62 0.87	2.5	-			Ī	-
	2.5 SON	1,000			-	=
SMOOTHED RELATION BETWEEN LOAD AND FL	$\overline{}$	Ē			Ī	∄
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z	Ł	W	X	•	=
	AD,	100	/ *		1	
STREAMFLOW EXCEEDED	Ŷ.	100				1
INDICATED PERCENTAGE OF TIME	_	E			ı	=
75 PERCENT = = = 25 PERCENT			/x		ī	
		10		d	o Berrande de la co	
		10 L 0.01	0.1	1 10	100	1,000
			STREAMFLOW,	IN CUBIC FEET PE	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	100		1
LOW FLOW HIGH FLOW			
LOW FLOW	80	_	_
TRENDS IN CONSENTRATION	60	·	4
TRENDS IN CONCENTRATION Z J VALUES NVALUES NWYS SLOPE OU		⊕	
LOW FLOW 0 0 ND Qu	40		╝
HIGH FLOW 8 5 ND		⊕	,
<u></u>		⊕ ⊕ ⊕	
MILLIG N	20	-	-
	0	<u> </u>	J
		76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	3

WATER YEAR

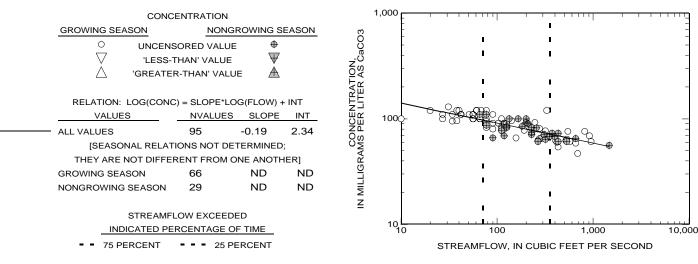
APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD		1,000,000	- 		
× UNCENSORED VALUE		E	ı	· i	\times
V 'LESS-THAN' VALUE	>	-	1	ı	€ -
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW)	+ INT &	100,000	1		
VALUES NVALUES SLOPE			1		=
ALL VALUES 112 0.74	3.2	}		×× 1	=
— SMOOTHED RELATION BETWEEN LOAD AND FLO	w G			I	=
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u>z</u>	10,000		Ī	
STREAMFLOW EXCEEDED	Č	5	- I	-	=
INDICATED PERCENTAGE OF TIME	_	'	<u>-</u>	Ī	=
75 PERCENT 25 PERCENT		F	Ī	Ī	-
		1,000	100	1,000	10,000
			STREAMFLOW,	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			200		ı	1 1	'	1 1	1	1		- 1	1	1	1 1	- 1	
LOW FLOW			HIGH FLOW	<u>/</u> $_{0}^{\circ}$															
O U	NCENSORE	D VALUE	⊕	CONCENTRATION, AMS PER LITER AS CaCO3	200	L													
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$	N. O.															
△ 'GI	REATER-THA	N' VALUI	■ ▲	A A															
				<u> </u>	150	L													_
TREN	IDS IN CONC	ENTRAT	ION	Z Z			0	0 0	0	0 0		0	0	0	00	0	0		0
VALUES	NVALUES	NWYS	SLOPE	PE		0	•	0	0 (Ø _	O	0 (Ċ		_	_	_	00	
LOW FLOW	39	16	0	SO	100	<u> </u>)		8		00	~ () (U	0			w	-
HIGH FLOW	19	12	ND	ZAZ			⊕		0	Ü									_
				<u>5</u>			Ψ.	\oplus			Ф		+		4	Φ •	\oplus	*	+
				IN MILLIGI	50	⊕			\oplus	#	∌ *		⊕						-
				2			₩	⊕		-	7					+	+		
				=															
					0	76 7	77 78	79	80 81	82 8	3 84	85	86	87 8	8 80	90	91 (92 0	13
						, 5 ,		. 5	00 01	02 0	5 54	- 55	55	<i>o, o</i>		. 50	01.	、	,,,

WATER YEAR

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

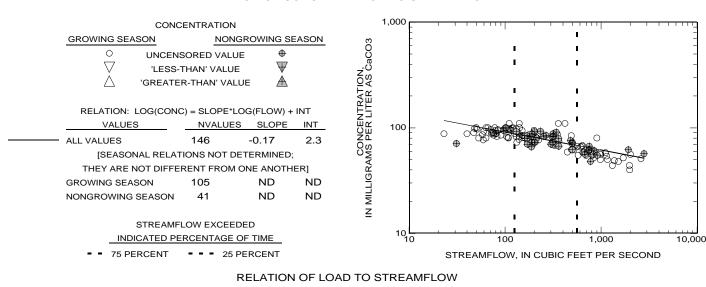
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD				1,000,000	- 	•	
×	UNCENSORED V	ALUE			F		· · · · · · · · · · · · · · · · · · ·	=
∇	'LESS-THAN' VA	LUE		>	Ē	i		=
RELATION: LOG(LO	OAD) = SLOPE*LC	G(FLOW)	+ INT	R D/	100,000			_
VALUES	NVALUES	SLOPE	INT	PE	100,000	i	* **	<u> </u>
ALL VALUES	95	0.81	3.07	NDS	Ē	×	ı	=
SMOOTHED RELATION	N BETWEEN LOAD	AND FLC	W	POU	Ē	* '		-
SHOWN IF THERE AR	E 10 OR MORE V	ALUES)		Z	10,000	• · · · · · · · · · · · · · · · · · · ·	i	=
STREA	AMFLOW EXCEED	ED		OAL		1	1	
INDICATED	PERCENTAGE C	F TIME		_	-		1	-
75 PERCENT	T = = = 25 P	ERCENT			-	i	1	-
					1,000	100	1,000	10,0
						STREAMFLOW, IN (

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	_		1 1	'	1 1	- 1	ı		ı	'	1	ı			ı	1
LOW FLOW HIGH F	ow_ ow_															
O UNCENSORED VALUE	. O 20	200 –														
√ 'LESS-THAN' VALUE	γου - Σου -															
△ 'GREATER-THAN' VALUE Z	CONCENTRATION, NO. 10 TO															
	ZH 1:	50														_
TRENDS IN CONCENTRATION	Z											\circ				
VALUES NVALUES NWYS SLOPE	- 25													0	_	0
LOW FLOW 25 7 N		00									0 () () C) (S)	00	9
HIGH FLOW 19 6 N)															
	G										•	*	₩ • • •	⊕		txt
	∃ ,	50									4	4	, w —		Φ,	
	IN MILLIG												*			
	₹															
		ے ہ	0 77	70 70		24 0	2 00		05 0	0-0-	7 00	-00		04 (20 (
		/	6 77	78 79	80 8	31 8	2 83	84	85 8	6 8	88	89	90	91 9	92 9	13


WATER YEAR

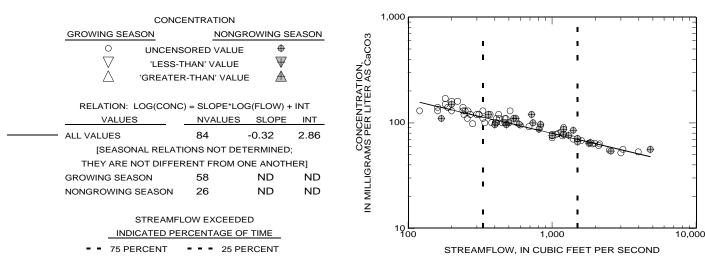
250 -

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

$ imes$ UNCENSORED VALUE $ ilde{\mathbb{V}}$ 'LESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	POS PER DA
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	100,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	10,000 1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			250			1	1	П	1	1	ı	1	1
LOW FLOW			HIGH FLOW	03											
\bigvee_{Λ}	INCENSOREI 'LESS-THAN' REATER-THA	VALUE	⊕ ₩ ± <u>A</u>	VTION, R AS CaCO3	200	_									
TREN VALUES	IDS IN CONC	ENTRATI	ON SLOPE	を正	150	_									
LOW FLOW HIGH FLOW	45 36	13 13	ND ND	CONCENT		_		(නි ^ර ද	30	0	o C	00	8	-
				IN MILLIGE		_	4	₩	J	₩	⊕ €	Þ	⊕	. •	•

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

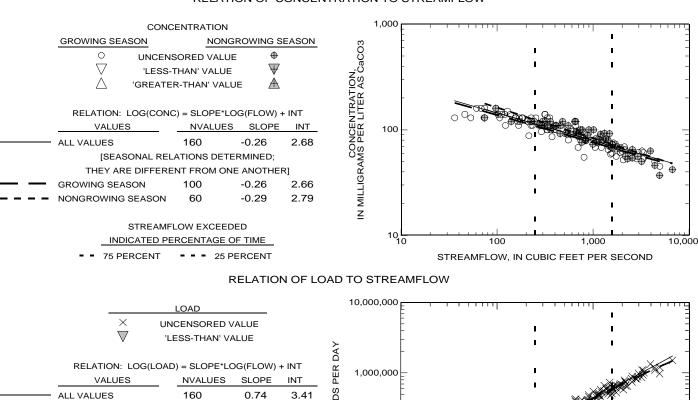
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

$\overline{\hspace{1cm}}^{ imes}$	LOAD UNCENSORED V 'LESS-THAN' VA			>	10,000,000	ı	· · · · · · · · · · · · · · · · · · ·	1 1	1 1 1	- - - -
RELATION: LOG(I VALUES ALL VALUES	LOAD) = SLOPE*LO NVALUES 84	OG(FLOW) SLOPE 0.68	+ INT INT 3.6	NDS PER DA	1,000,000					
	RE 10 OR MORE V	ALUES))W	LOAD, IN POUN	100,000		1			-
INDICATE 75 PERCEN	D PERCENTAGE C	ERCENT			10,000		1,000	1 1		10,00
						STREA	AMFLOW, IN CUBIC	FFFT PF	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

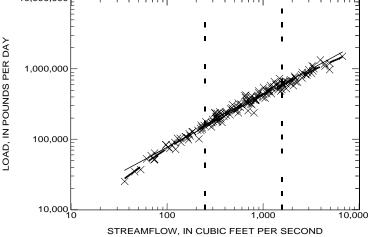

CONCENTRATION		250	- 1	- 1	ı	1	1	ı	ı	ı	ı	1	-	-	1	1	- 1	
LOW FLOW UNCENSORED VALUE VILESS-THAN' VALUE GREATER-THAN' VALUE	CONCENTRATION, MS PER LITER AS CaCO3	200	_															-
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	SENTRA	150	_														000	<u>``</u> @@
LOW FLOW 23 6 ND HIGH FLOW 16 4 ND	CONC RAMS PE	100	_												0	0	0	0000
	IN MILLIGF	50													⊕	₽₽₽		*
	=	0	76 7	7 78	3 79	9 80	81	82	2 83	3 84	4 8	5 8	6 8	7 88	8 89	90	91 9	92 93

WATER YEAR

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

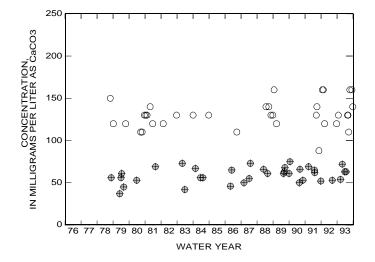


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

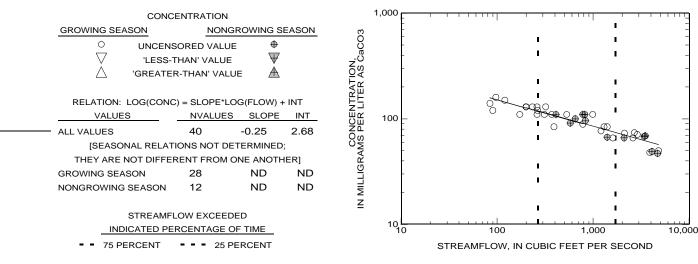
75 PERCENT - - 25 PERCENT

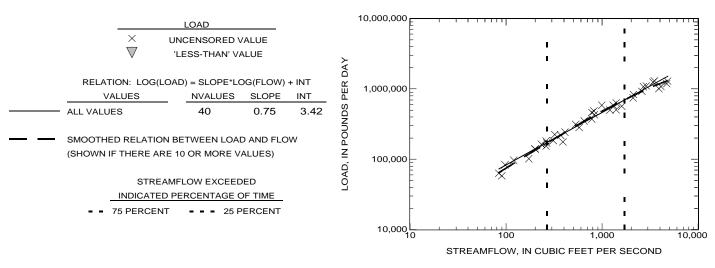

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION								
LOW FLOW	HIGH FLOW							
Ο υ	+							
∇	√							
△ 'GF	REATER-THA	N' VALUE	■ 🛦					
TREN	ION							
VALUES	SLOPE							
LOW FLOW	35	13	0					

14

0


HIGH FLOW

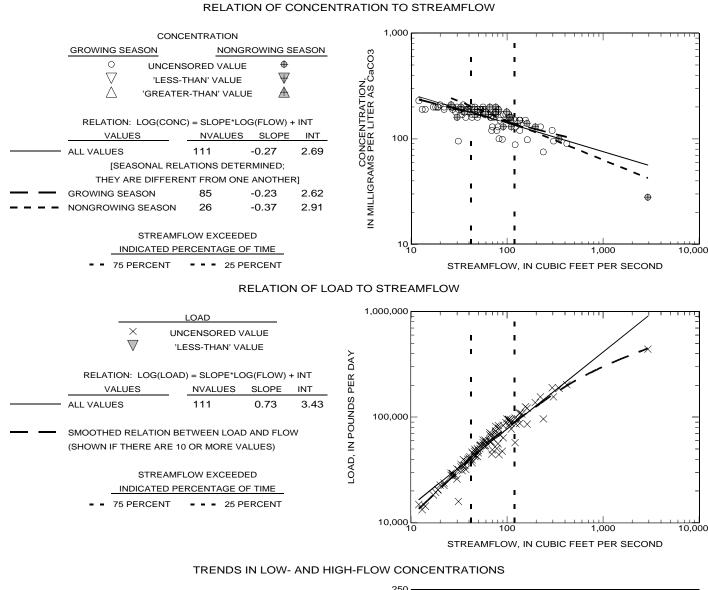

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

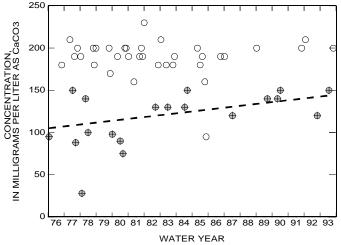

CONCENTRATION		200	1 '	1 1	1		- 1		' '					'		'
LOW FLOW	HIGH FLOW	Ö														
O UNCENSORED VALUE	⊕	0 200	_													_
'LESS-THAN' VALUE	₩	χς Ο														
△ 'GREATER-THAN' VALUE	E A	CONCEN I KA I ION; AMS PER LITER AS CaCO3 00 120 120 120 120 120 120 120 120 120 1													_	
	Ì	호 <u>별</u> 150	_												0	Θ
TRENDS IN CONCENTRATI	ION	7 7 7		C)					С)				0	0
VALUES NVALUES NWYS	SLOPE Q	Z Z Z		0 0	,		0			_		0				
LOW FLOW 11 8	ND (ဥ္ပစ္ 100	-				O									-
HIGH FLOW 11 7	ND	ZA.						_					Φ.			
		<u>5</u>	4	$\oplus \oplus$	\oplus			•			4	₽	0			⊕
		50 MILLIG	_	⊕ ⊕	\oplus											-
		≥ Z														
		=														
		0	76	77 78	79 80	81 8	32 83	84	85	86	87	88	89 9	90 9	1 92	93

WATER YEAR

250 -

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time 01391500 SADDLE RIVER AT LODI, N.J.

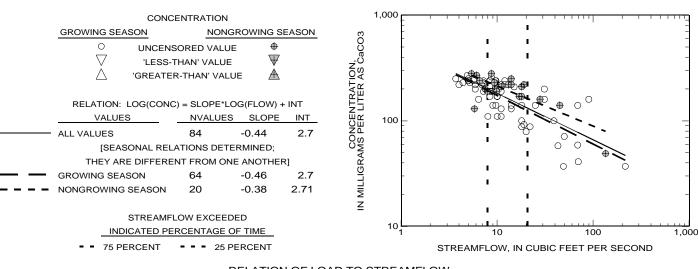
[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


О U	 UNCENSORED VALUE 									
∇ ,	'LESS-THAN' VALUE									
△ 'GF	'GREATER-THAN' VALUE									
TREN	DS IN CONC	ENTRATI	ION							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	35	15	0							
 HIGH FLOW	19	12	2.21							

LOW FLOW

0

CONCENTRATION


HIGH FLOW

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

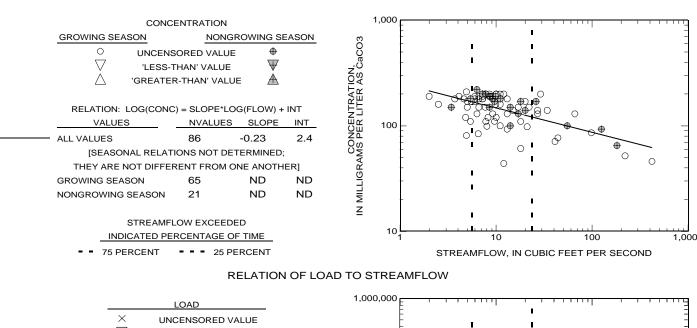
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	100,000
X UNCENSORED VALUEVESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 84 0.56 3.43	NO 10,000 -
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	AD, IN POLY
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT	
75 PERCENT 25 PERCENT	1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		000	' '			1 1	'	- 1			1 1 1
LOW FLOW	HIGH FLOW	3									
O UNCENSORED VALUE	⊕ ⊕	2 400	_								_
√ 'LESS-THAN' VALUE	₩ ××)									
△ 'GREATER-THAN' VALU	JE A Ş	<u> </u>									
	TION Z- SLOPE ND OW	300	_								_
TRENDS IN CONCENTRA	TION	j		С)					0	0
VALUES NVALUES NWYS	SLOPE Ö	j		~	0	0		0		0	° & ° d
LOW FLOW 22 10	ND Öğ	200	_	Q	, -			9	0		• –
HIGH FLOW 16 11	ND	ξ		O		⊕	⊕	0		⊕	0
	<u>Q</u>	2			0	*	\oplus		\oplus	•	⊕
	<u>g</u>	100	_	₩							_
	2	7							⊕	$_{\oplus}$ $^{\oplus}$	
	2	=		⊕	⊕			\oplus			•
		0	76 77 7	78 79 80	81 8	2 83	84 8	85 86	87	88 89 9	90 91 92 93


WATER YEAR

500 -

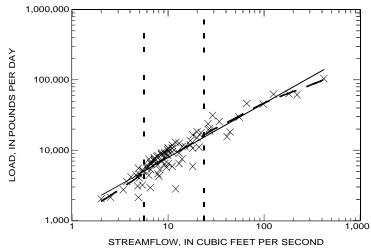
APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

'LESS-THAN' VALUE

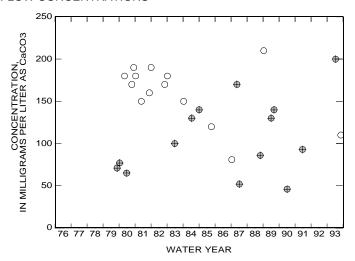
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT


VALUES NVALUES SLOPE INT
- ALL VALUES 86 0.77 3.13

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

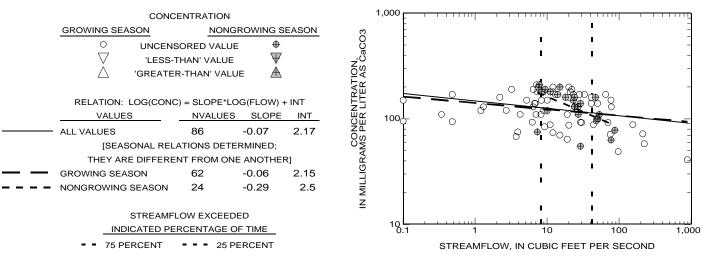
STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME


75 PERCENT - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION	
LOW FLOW	I	HIGH FLOW
0	UNCENSORED VALUE	<u>+</u>
∇	'LESS-THAN' VALUE	\forall
\triangle	'GREATER-THAN' VALU	E A
	DENIDO IN CONCENTRA	TON!


	IKEN	DS IN CONC	ENIRAL	ION
VAI	LUES	NVALUES	NWYS	SLOPE
LOW	FLOW	14	9	ND
HIGH	IFLOW	14	11	ND

APPENDIX 2. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL HARDNESS 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

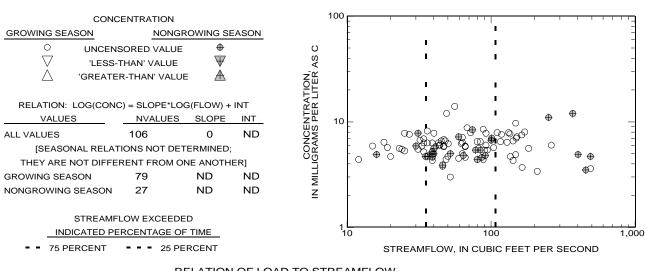
LOAD X UNCENSORED VALUE	1,000,000
'LESS-THAN' VALUE	¥ 100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	PER D
ALL VALUES 86 0.93 2.9	10,000 × 1
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	00 H 1,000 H 1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT - 25 PERCENT	
	10 0.1 1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	250		1	1 1	1 1	- 1	1	1 1	ı	1	1 1	ı	1
LOW FLOW													
O UNCENSORED VALUE # 0	200	_		0			0			0			_
√ 'LESS-THAN' VALUE ₩ Zoo						0	0		0			0	
∴ 'GREATER-THAN' VALUE ☐				0	_				O	+	+		
A.R.	150			•						•)		_
TRENDS IN CONCENTRATION			C				Φ /	0		-		0	
VALUES NVALUES NWYS SLOPE OF					_			ÓCC)			0	
LOW FLOW 27 13 ND <u>ဝိ</u> ဋ္ဌ	100	_		_	0	0			⊕ "	0	⊕ €		_
HIGH FLOW 19 12 ND			⊕	4	0 0			⊕			\oplus		
G _R				Ф C	O Φ	0			\oplus				⊕
MILLIG N	50	_									⊕ €	₽	_
Ξ									⊕		•		
<u>z</u>													
	0												لي
		76 77 7	78 79	80 8	1 82	83 8	4 85	86	87 8	8 89	90 9	1 92	93

WATER YEAR

250 -


Appendix 3 Total organic carbon

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

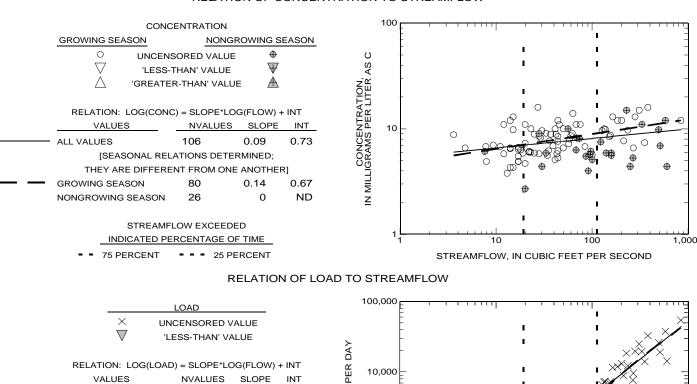
APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		100,000
× UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	<u>}</u>	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	PER D/	10,000
ALL VALUES 106 1.02 1.47	NDS	
— SMOOTHED RELATION BETWEEN LOAD AND FLOW	I POU	
(SHOWN IF THERE ARE 10 OR MORE VALUES)	λ Ε	1,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	9	
75 PERCENT 25 PERCENT		
		100 100 1,000
		STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			
LOW FLOW HIGH FLOW			
O UNCENSORED VALUE ♥ VILESS-THAN' VALUE OF GREATER-THAN' VALUE	RATION, IR LITER AS C		-
TRENDS IN CONCENTRATION	ER LI	<u>;</u>	-
VALUES NVALUES NWYS SLOPE LOW FLOW 20 11 ND HIGH FLOW 25 11 ND	CONCENTI IN MILLIGRAMS PE 2		- ()
	Z	'F ○	J

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

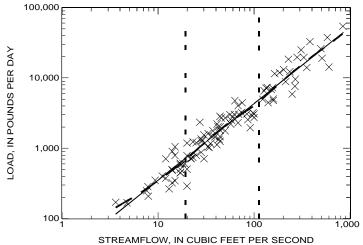
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

ALL VALUES

LOW FLOW


HIGH FLOW

106

STREAMFLOW EXCEEDED

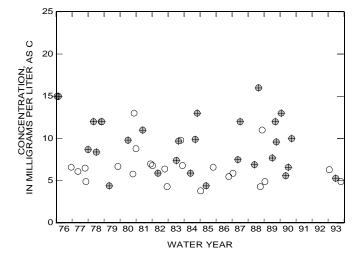
INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
\triangle ,	GREATER-THA	N' VALUE	\blacksquare
TR	ENDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

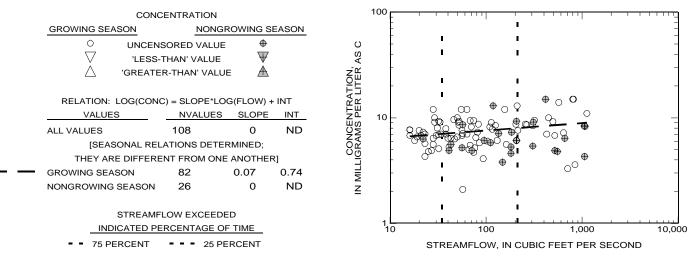
14


15

ND

0

24


28

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

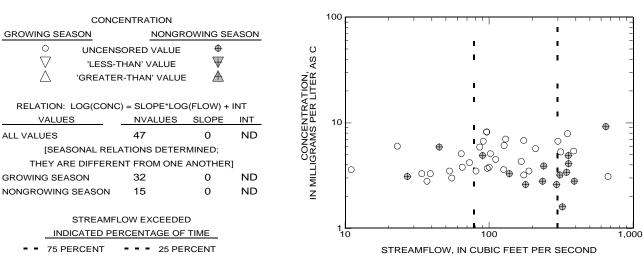
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMELOW

RELATION OF LOAD	TO STREAMFLOW
LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	Z 1,000 ×
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	100 100 1,000 10,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTE	RATION				ı	1	1 1	- 1	ı	1 1	'	1	1		,	1	1
LOW FLOW			HIGH FLOW															
0 UI	NCENSORE	D VALUE	⊕	AS C	20	_												
ا' 🗸	_ESS-THAN	l' VALUE	$\overline{\Psi}$	~~ ~														
△ 'GR	EATER-TH	AN' VALUE	<u> </u>	6 <u>H</u>														
				ĘΞ	15∉	1))									⊕			
TREN	DS IN CON	CENTRATI	ON	NTRAT PER LI	- 1	•		\oplus							*			
VALUES	NVALUES	NWYS	SLOPE	Äα		0								_				
LOW FLOW	26	14	ND	CONCER	10	_			4		0	⊕		•				
HIGH FLOW	25	14	0	OO R		_	***)	Ф~д	7	*		(\mathcal{O}	٥ _	⊕ €	\Phi	
				⋾		0	₩	0	9	00	Ф0		0	0	⊕ 8	⊕ €	₽	
				N N	5	_	0	Φ.		0 () C	₩@#)		•			
				Z			€	₽₩			O	-				⊕		


25 -

00

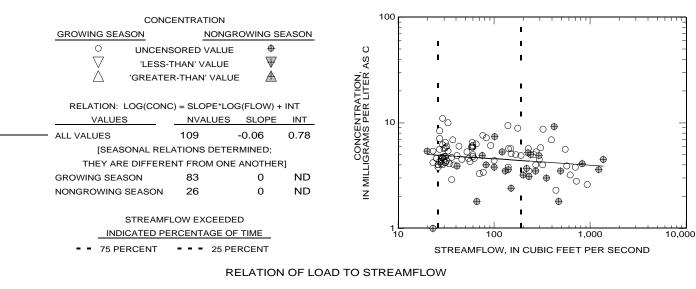
APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	10,000 - I X X - I
ALL VALUES 47 1.02 1.33 — SMOOTHED RELATION BETWEEN LOAD AND FLOW	DO COMPOS
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	1,000 X X X X X X X X X X X X X X X X X X
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	100
	100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

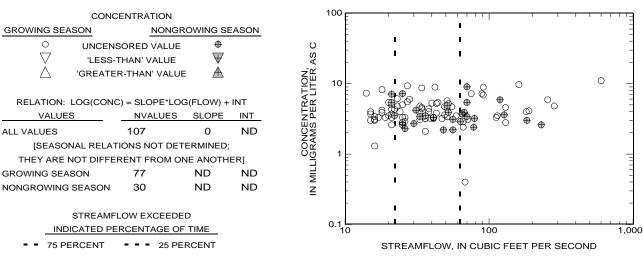
CONCENTRATION			
LOW FLOW	HIGH FLOW	+	
○ UNCENSORED VALUE ○ 'LESS-THAN' VALUE △ 'GREATER-THAN' VALUE	ON A S S S S S S S S S S S S S S S S S S	- ⊕ ⊕	-
TRENDS IN CONCENTRATI	CONCENTRATION ON GONCENTRATION FOR THE REALITIES ON ON ON ON ON ON ON ON ON O	+ 0 0	_ _ _
LOW FLOW 12 7	ND ZA 4	• •	_
HIGH FLOW 12 6	ND SÖB HIFT SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	S ⊕ · · · · · · · · · · · · · · · · · ·	- & -

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD			100,000		•	
$\stackrel{ imes}{ riangledown}$	UNCENSORED \ 'LESS-THAN' VA			A \	1		- - - -
RELATION: LO	G(LOAD) = SLOPE*L0	OG(FLOW)	+ INT	10,000 E	1	×××××	_
VALUES	NVALUES	SLOPE	INT	10,000	. ×	X	1
ALL VALUES	109	0.94	1.51	NDS	· · · · · · · · · · · · · · · · · · ·	×××	=
— SMOOTHED RELA	ΓΙΟΝ BETWEEN LOAI	O AND FLO	DW .	Pou		< _	-
(SHOWN IF THERE	ARE 10 OR MORE V	ALUES)		Z 1,000		1	-
ST	REAMFLOW EXCEED	ED		OAE	× ×	1	=
INDICA	TED PERCENTAGE C	OF TIME		-		i	=
= = 75 PERC	ENT 25 P	ERCENT		-	1	I	-
				100	100	1,000	10,0
					STREAMFLOW,	IN CUBIC FEET PER SEC	OND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		10		π		1 1	ı	1 1	ı	1 1	ı	1 1	
LOW FLOW	HIGH FLOW			Ф									
O UNCENSORED VALUE	——— S	8		Ψ									
√ 'LESS-THAN' VALUE	₩ <												
△ 'GREATER-THAN' VALUE	CONCENTRATION, MILLIGRAMS PER LITER		⊕										
	E-1	6											
TRENDS IN CONCENTRATI	on Kr		A ⊕	Ф(₽	\oplus		0					
VALUES NVALUES NWYS	SLOPE HØ		₽ _⊕	-			0	Φ.			⊕		
LOW FLOW 8 7	ND SÃ	4		+ +	-		- ₋	+	2			0	
– – – HIGH FLOW 31 14	-0.1 See			•			⊕ ⊕		⊕ ∪'-			⊕	
	Ë				⊕		4)		Ψ	₩		_
	Ē	2			Ψ	\oplus							
	Z			⊕									
			0										

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

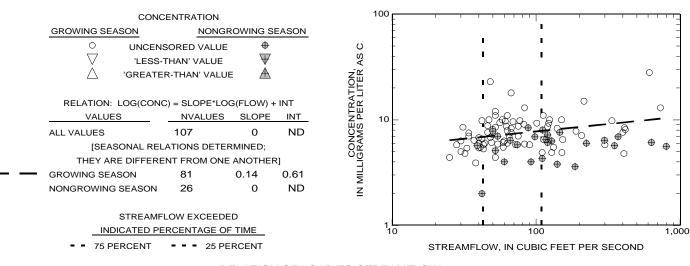
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	OUNDS PER 10,000 PER 1 P
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	1,000 100 100 100 1,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION				'		' '			' '	'	•				•
LOW FLOW			HIGH FLOW														
O UN	NCENSORE	D VALUE	⊕	S	20	_											
ינ 🗸 יו	ESS-THAN	VALUE	$\overline{\Psi}$	<													
△ 'GR	EATER-THA	N' VALUE	<u> </u>	NO.													
				<u>F</u> -	15	_											
TREN	DS IN CONC	ENTRATI	ON	ÄÄ													
VALUES	NVALUES	NWYS	SLOPE	Π. N.													
LOW FLOW	24	12	ND	CONCENTRATION. GRAMS PER LITER	10	_							•	. +			
HIGH FLOW	30	16	0	00.0 0.00			\oplus		0				4				
				Ξ.		€	₽	\oplus	0							⊕	
				₹	5	_	& [⊕]			•		0_				⊕	
				Z		Φ	•	₩ (₽⊖€	വ വൈക	₩ Ø#	€	0	*		0
						0	•	Ψ	^	₽ ~		-0			# ₹	Þ	

STREAMFLOW, IN CUBIC FEET PER SECOND

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

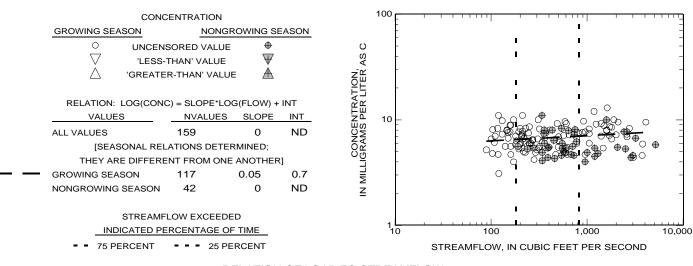
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

× × ×	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES 107 1.08 1.43 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 10,000 2 1,000	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	1,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTE	RATION				1 '	'	1	' '	'		'		
LOW FLOW			HIGH FLOW											
٥ ر	INCENSORE	D VALUE	⊕		יט 10 40	Ĺ								
∇	LESS-THAN	' VALUE	$\overline{\Psi}$		₹ '`									
△ 'GI	REATER-TH	AN' VALUI	E A	<u>N</u>	<u> </u>									
				A.	30	, _								
TREN	NDS IN CONC	CENTRAT	ION	μį	Ī									(
VALUES	NVALUES	NWYS	SLOPE	Ä,	N T									
LOW FLOW	19	11	ND	CONCEN	∑ ₹ 20	_								
HIGH FLOW	39	15	0	85	Y U									
					10			4)					
					<u>≥</u> 10) 	,	₩	₽		 4	.		
				:	Z	•	••••••••••••••••••••••••••••••••••••••	•	0	Ç.		SOUTH PROPERTY OF THE PROPERTY	•	Q

50 **-**

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

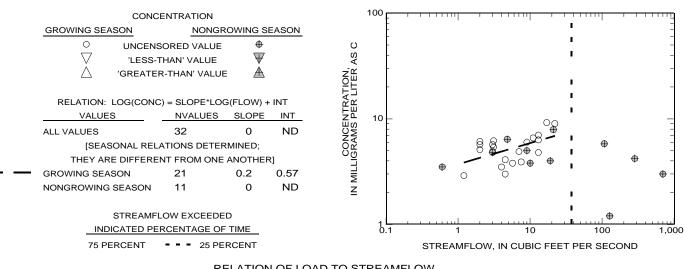
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	1,000,000	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000 - 1	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	0AD, IN POO	
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	1,000	100 1,000 10,000
		STREAMELOW IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		23		-	1 1	1	1 1	1 1	1	1 1		
LOW FLOW O UNCENSORED VALUE VLESS-THAN' VALUE	GH FLOW	20	_									
☐ 'GREATER-THAN' VALUE TRENDS IN CONCENTRATION		15	_				+					
VALUES NVALUES NWYS S LOW FLOW 26 14 HIGH FLOW 44 16	LOPE 0 0 0 0 O O O O O O O O O O O O O O O	10 ·	- °	⊕ ' ○ ⊕	⊕	8	o [€]	Ο Ψ	⊕ _⊕	• •	0	⊕ , ⊕ ∯ ⊕

25

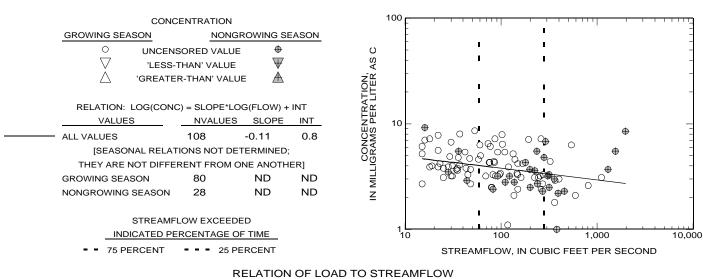
APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	RATION			10		ı	1	1	1	1	1	1	1	1	1	ı	1	1	
LOW FLOW			HIGH FLOW																	
O UN	NCENSORE	D VALUE	⊕	AS C	8	_														
ן,	ESS-THAN	' VALUE	$\overline{\Psi}$		_															
△ 'GR	EATER-THA	AN' VALUE	A	TER,																
				누그	6															
TRENI	OS IN CONC	CENTRATI	ON	NTR/ PER	6	₽														
VALUES	NVALUES	NWYS	SLOPE	SE PN:																
LOW FLOW	0	0	ND	CONCER	4	_														
HIGH FLOW	4	3	ND	90 80																
							-	₽												
				Z Z	2															
				Z	_															
							#)												

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

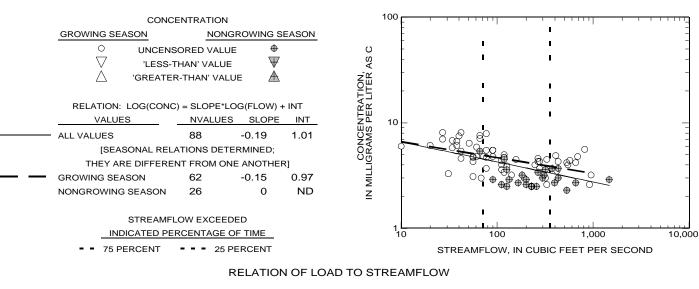
RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				100,000	1 1 1 1	1111		, IIII ,	*	1111
$\stackrel{\times}{ riangledown}$	UNCENSORED V 'LESS-THAN' VA			ΑΥ	-		I I	! !		,	
RELATION: LOG	G(LOAD) = SLOPE*LC	G(FLOW)	+ INT	R D	10,000		1	√aκ ′			_
VALUES	NVALUES	SLOPE	INT	PEF	10,000		ī	XXXX	×		
- ALL VALUES	108	0.89	1.53	NDS	F		×××				
SMOOTHED RELAT	ION BETWEEN LOAD	AND FLC	w	Pou	Ē	>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×~~×			
(SHOWN IF THERE	ARE 10 OR MORE V	ALUES)		Ξ	1,000	~ × × × × × × × × × × × × × × × × × × ×	*****	Ī			-
STR	EAMFLOW EXCEED	ED		OAL	Ė		1 ×	I			
INDICAT	ED PERCENTAGE C	F TIME		_	-	^X					
75 PERCE	ENT = = 25 P	ERCENT			-	X	1	ı			
					100		100		1,000		10,0
						STREA	MFLOW IN	CUBIC F	EET PER SI	ECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			' ' '
LOW FLOW HIGH FLOW			
O UNCENSORED VALUE	TION, LITER A	8 - 9) 0
VALUES NVALUES NWYS SLOPE LOW FLOW 37 15 0 HIGH FLOW 19 12 ND	CONCE IN MILLIGRAMS		_ ⊕

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

10 **-**

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

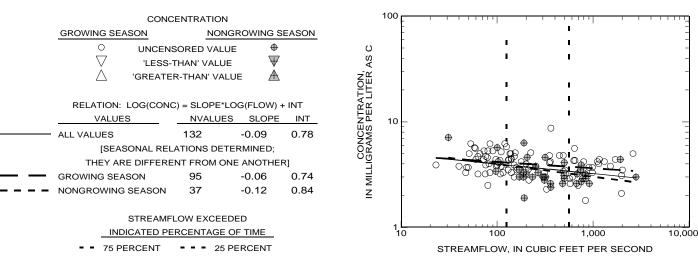
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 88 0.81 1.75	- F I W AXX
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	1,000
INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 100 1,000 10,000
	30 100 1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION


CON	CENTRATION							
LOW FLOW		HIGH FLOW						
O UNCE	NSORED VALUE	⊕	O S	_			0	4
√ 'LESS	S-THAN' VALUE	$\overline{\Psi}$	⋖			0 0	_	
△ 'GREAT	ER-THAN' VALU	E 	ομ N			0	8	0
			Ē5. (_		O	8	a
TRENDS I	N CONCENTRAT	ION	Σ. Σ.				•	(4)
VALUES NV.	ALUES NWYS	SLOPE	Ξ.V.				$\oplus \oplus$	00
LOW FLOW 2	24 7	ND	CONCENTRATION. LIGRAMS PER LITER	_		_ ⊕ ♣	.	₩ _
HIGH FLOW 1	8 6	ND	00 80			• ~	•	
			- 1			• •	O **	₩
			W WILL	_		Φ Ψ	44	
			<u>z</u>					
			'	76 77 78 79	9 80 81 82 83 84 85	86 87 88 89	90 91	92 93

WATER YEAR

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD				100,000		•	×	
$\stackrel{ imes}{ riangledown}$	UNCENSORED V 'LESS-THAN' VA			۸	-		· ·	ŽŽ.	
RELATION: LOG	(LOAD) = SLOPE*LC	G(FLOW)	+ INT	ER D.	10,000	i	ı X	•	
VALUES	NVALUES	SLOPE	INT	PE	10,000	i			
ALL VALUES	132	0.91	1.51	DS	E	`	(XXXXX)		
	ON BETWEEN LOAD ARE 10 OR MORE V)W	D, IN POL	1,000	×	, , , , , , , , , , , , , , , , , , ,		
STR	EAMFLOW EXCEED	ED		Ŏ.	F	×	· ·		
INDICAT	ED PERCENTAGE C	F TIME		_	F				
75 PERCE	NT = = 25 P	ERCENT			-	ı			
					100	100	1,0	000	10
						STREAMFLOW	, IN CUBIC FEET P	ER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

		10		$\overline{}$	_	\neg	\neg			$\overline{}$	$\overline{}$	\neg	\neg	\neg	\neg	\neg			$\overline{}$
CONCENTRATION																			
LOW FLOW HIGH FLOW																			
○ UNCENSORED VALUE	S	8																	
√ 'LESS-THAN' VALUE √	⋖	Ü																	
	JON, TER					C)												
	Ě5	6				(∞							0					
TRENDS IN CONCENTRATION	TR/	Ü				0				`		0	0					8)
VALUES NVALUES NWYS SLOPE	ΩN.					\cap) 7								U	4
LOW FLOW 41 13 ND	CONCENT MILLIGRAMS PI	4		0	₽	0		_	, (,	(₽@		+	₩	, +	_	0
HIGH FLOW 34 13 ND	ÖΆ	7				_	0)		_	У). Г	⊕	4		⊕)	•	₽
				0	÷		0		\oplus		0	,			_ ⊘ ⊕	⊕ .	₽⊕ €	₩	•
	₹	_			\oplus			0		Ф	0			*	#		⊕		4
	Z	2	_					\oplus		Ψ	,								
	_																		

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

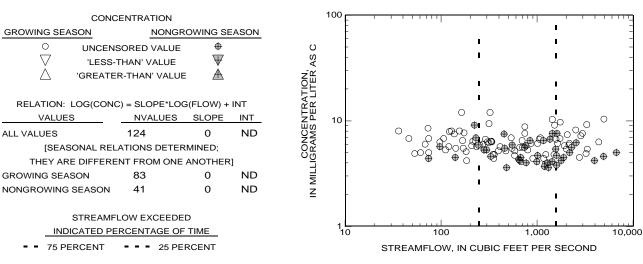
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION				100		_
GROWING SEASON	NONGR	OWING S	EASON		‡	. 1	
O LINCENS	ORED VALUE			O	ţ	1	
	HAN' VALUE	₩		Ŋ,	+	1	
, ^	R-THAN' VALUE			- Σα	-		
△ GREATER	K-THAN VALUE			호핀		1	
RELATION: LOG(CONC) - SI OBE*I OC	YEL ()\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	INIT	YA L		1 1	
VALUES	NVALUES	SLOPE	INT	CONCENTR GRAMS PER		I	
				SEN	10 –	- A I O O O	
ALL VALUES	80	0	ND	S≥	F		
[SEASONAL RELA	ATIONS DETER	MINED;		Ö₽	10	A CONTRACTOR SO A COM	
THEY ARE DIFFERE	NT FROM ONE	ANOTHER	۲]	-	-		
GROWING SEASON	57	0	ND	N MIL	-	• • • • • • • • • • • • • • • • • • • •	
NONGROWING SEASON	23	0	ND	z			
				=	Ī	ı	
STREAMFL	.OW EXCEEDE	D				1 I	
INDICATED PEI					100	1,000	1
					100	*	
75 PERCENT	25 PEI	RCENT				STREAMFLOW, IN CUBIC FEET PER SECOND	

RELATION OF LOAD TO STREAMFLOW

	LOAD				1,000,000	1 1		 	
$\stackrel{ imes}{ riangledown}$	UNCENSORED V			ΑΥ	Ē	1	1 1	! !	
RELATION: LOG	(LOAD) = SLOPE*LO	G(FLOW)	+ INT	ER D	100,000	ı	1	. ×_	<u>,</u>]
VALUES	NVALUES	SLOPE	INT	砬	100,000	ı	•	XX	^ =
ALL VALUES	80	0.96	1.57	ONDS	Ē			×	=
SMOOTHED RELATI	ON BETWEEN LOAD	AND FLO	W	Ō	-		×××××××××××××××××××××××××××××××××××		-
(SHOWN IF THERE A	ARE 10 OR MORE V	ALUES)		Ď,	10,000			!	
STR	EAMFLOW EXCEED	ED		Ŏ.	F		`	•	=
INDICAT	ED PERCENTAGE C	F TIME			[*	×.	•]
75 PERCE	NT = = 25 P	ERCENT			-	1	1		-
					1,000	1 1	1,000	<u> </u>	10,000
						STREAM	MFLOW, IN CUBIC FE	EET PER SECO	ND

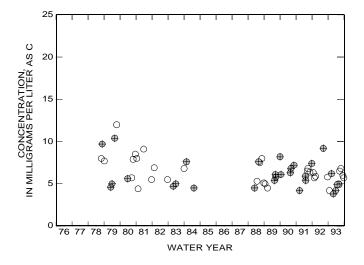

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		1
LOW FLOW HIGH FLOW		○ ⊕
O UNCENSORED VALUE ♥ VILESS-THAN' VALUE ▼ OREATER-THAN' VALUE ★ TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	ENTRATION, S PER LITER AS C 9 8	
LOW FLOW 21 6 ND HIGH FLOW 16 4 ND	CONCE IN MILLIGRAMS	

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

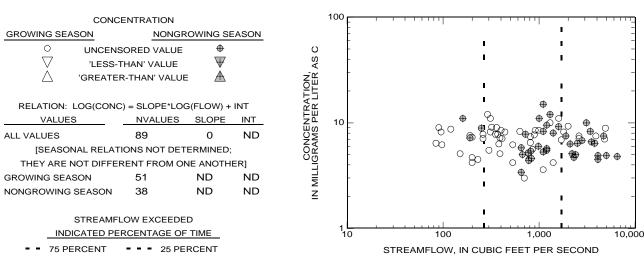
RELATION OF CONCENTRATION TO STREAMFLOW



RELATION OF LOAD TO STREAMFLOW

	LOAD				1,000,000	- 			
$\stackrel{ imes}{ abla}$	UNCENSORED V 'LESS-THAN' VA			Α	- - - -		1	i	× =
RELATION: LOG VALUES	G(LOAD) = SLOPE*LC NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D	100,000		1		
ALL VALUES	124	0.98	1.57	NDS	Ē		· · · · · · · · · · · · · · · · · · ·		=
SMOOTHED RELAT	ION BETWEEN LOAD	O AND FLC	w	POL	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-
(SHOWN IF THERE	ARE 10 OR MORE V	ALUES)		Ž Ć	10,000		XXXX	ı	
	REAMFLOW EXCEED TED PERCENTAGE C			LOA	Ē		, i	1	=
75 PERCI	ENT 25 P	ERCENT			1,000	100	I 1	I I,000	10,000
							, IN CUBIC FEET		-,

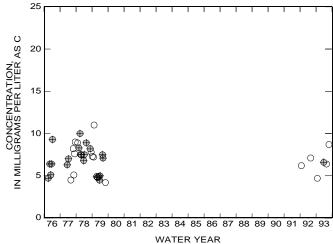
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	\blacksquare
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	33	11	ND
HIGH FLOW	28	11	ND

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

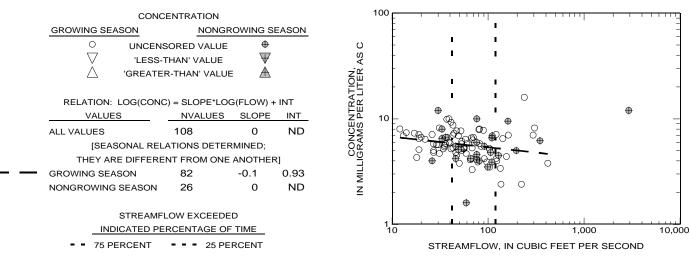
RELATION OF CONCENTRATION TO STREAMFLOW



RELATION OF LOAD TO STREAMFLOW

	LOAD				1,000,000			,	
$\stackrel{ imes}{ riangledown}$	UNCENSORED V			ΑΥ	- - -		1	; ;	
RELATION: LOG VALUES	(LOAD) = SLOPE*LO NVALUES	G(FLOW) SLOPE	+ INT INT	PER D	100,000		1		
ALL VALUES	89	0.98	1.63	UNDS	-		·	***	=
- SMOOTHED RELATI	ON BETWEEN LOAD	AND FLO	w	РО	-		XXX	** × ,	-
(SHOWN IF THERE	ARE 10 OR MORE VA	ALUES)		Ď,	10,000		XXXX	× 1	
	EAMFLOW EXCEED			ГО			⋌ ፠ı	ı	=
75 PERCE	ENT = = 2 5 PI	ERCENT			1,000	100		1 000	10,000
					10	100 STREAMFLOW,	IN CUBIC FE	1,000 EET PER SECO	10,000 OND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION		
LOW FLOW			HIGH FLOW	
O и	INCENSORE	D VALUE	⊕	
\triangle	'LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GI	REATER-THA	N' VALUI	■ ▲	Ŏ
				RATIO
TREN	NDS IN CONC	ENTRAT	ION	Ę
VALUES	NVALUES	NWYS	SLOPE	Ä
LOW FLOW	16	5	ND	OONCENT
HIGH FLOW	23	5	ND	8

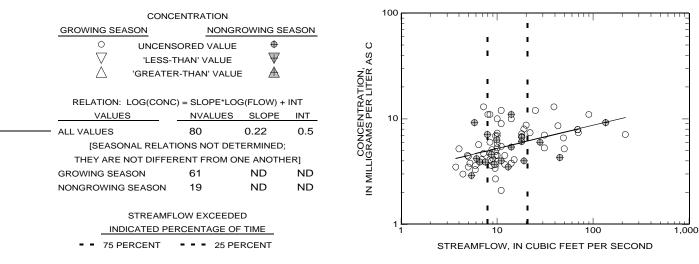
APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMELOW

RELATION OF LO	OAD TO STREAMFLOW
LOAD	1,000,000
× UNCENSORED VALUE	* * * * * * * * * * * * * * * * * * *
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	100,000 L
ALL VALUES 108 0.97 1.53	δη 25 10,000 = ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	1,000
75 PERCENT 25 PERCENT	100 1,000 10,000
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			1 ' '			
LOW FLOW	HIGH FLOW					
O UNCENSORED VALUE	⊕	ပ ဖု 20	0			_
√	$\overline{\Psi}$	_∢				
△ 'GREATER-THAN' VALUE	■ ▲	ΘË				
		F . 15	5 —	⊕		_
TRENDS IN CONCENTRATI	ON	ZE,				
VALUES NVALUES NWYS	SLOPE	SEN	⊕	0		
LOW FLOW 34 15	0	CONCENTRATION GRAMS PER LITER	o - 0		0	_
HIGH FLOW 18 11	ND	08 8	•	0 0	0	
		⊐	000	or_(U) :	o 8 0 €	_ ⊕
		N MI	5 - 0 0 0	, o , •	0 0	• • •
		∠	0	⊕○ ⊕	•	Ψ Ψ
			⊕		⊕	

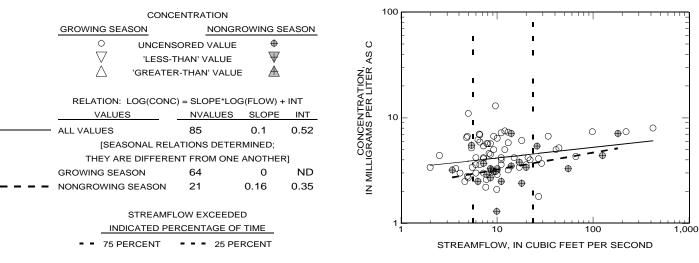
APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE >	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 80 1.22 1.23 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 100 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		1		
LOW FLOW	GH FLOW			
○ UNCENSORED VALUE VLESS-THAN' VALUE GREATER-THAN' VALUE	ATION, AS TO THE			
	A HA	+	⊕	O •
LOW FLOW 19 10 HIGH FLOW 16 11	ND ND ND ND STATE NO ND	⊕ ○ ⊕ ○ - · · •	• **	+ + 0 0 0 0

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

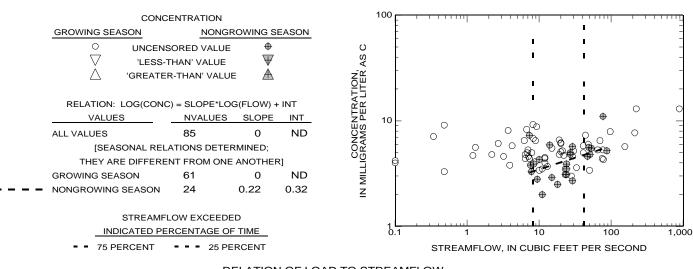
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD			100,000			
$\stackrel{ imes}{ riangledown}$	UNCENSORED VAL		>	- - -] 		' م
RELATION: LOG VALUES	(LOAD) = SLOPE*LOG(NVALUES S	(FLOW) + INT SLOPE INT	PER DAY	10,000		. >	
- ALL VALUES	85	1.1 1.25	JNDS	1,000 =	•		
SMOOTHED RELATI	ON BETWEEN LOAD A	ND FLOW	PO	Ē	' ×		
(SHOWN IF THERE	ARE 10 OR MORE VALU	JES)	Z	-	×	×	
	EAMFLOW EXCEEDED ED PERCENTAGE OF		LOAD,	100			
= 75 PERCE				E	×	1	
				10	10	10	00
					STREAMFLOV	/, IN CUBIC FEET F	PER SECONI

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

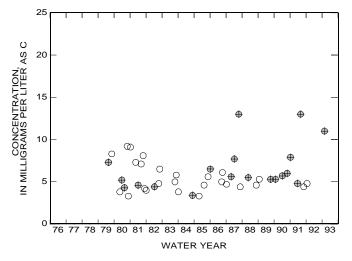

					25										
	CONCENT	RATION			25		ı	1	1					1	Т
LOW FLOW			HIGH FLOW												
O UI	NCENSOR	ED VALUE	⊕	8	20										
	LESS-THAI	N' VALUE	$\overline{\Psi}$	Š											
△ 'GR	REATER-TH	HAN' VALUE	A	NO.											
				R LI	15	L									
TREN	DS IN CON	ICENTRATI	ON	た 説											
VALUES	NVALUES	S NWYS	SLOPE	Ω N											
LOW FLOW	14	9	ND	CONCE	10	_							0		
HIGH FLOW	14	11	ND	OO RO											
				Ė					€	₽					\circ
				MILL	5	L			P)	^				_
				Z					-	600	00	$\cap \Phi$	_	\oplus	

Ф

APPENDIX 3. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL ORGANIC CARBON 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

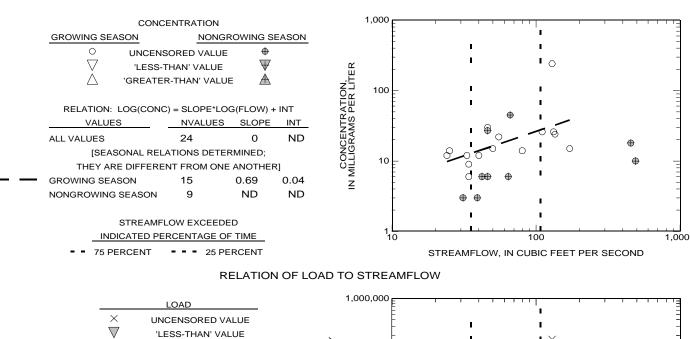


RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	100,000 - I I I I I I I I I I I I I I I I I
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	1,000 IN DONNON DE LO DE LO DE LO DE LO DEL
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION										
LOW FLOW			HIGH FLOW							
Ο υ	NCENSORE	D VALUE	+							
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$							
△ 'GF	REATER-THA	N' VALUE	■ ▲							
TREN	IDS IN CONC	ENTRAT	ION							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	26	13	ND							
HIGH FLOW	19	12	ND							


Appendix 4 Suspended sediment

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

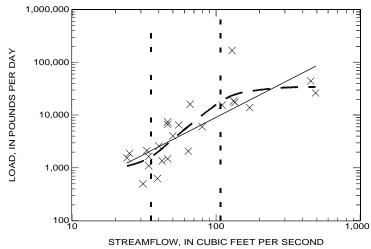
APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

 RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

 VALUES
 NVALUES
 SLOPE
 INT


 ALL VALUES
 24
 1.4
 1.16

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

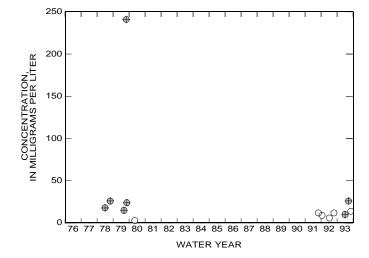
75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
△ '(GREATER-THA	'N' VALUE	■ ▲
TRE	ENDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

7

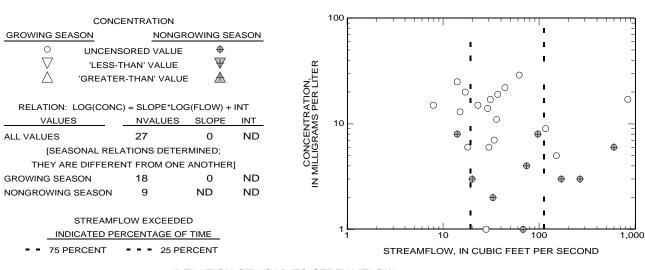
4


3

ND

ND

LOW FLOW


HIGH FLOW

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

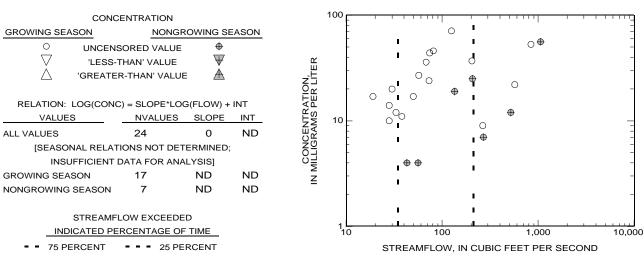
LOAD			100,000	- 		
	DRED VALUE HAN' VALUE	<u>}</u>	-		; ;	
RELATION: LOG(LOAD) = SLO VALUES NVAI	, ,	INT H	10,000		· × ·	
— ALL VALUES 27 — SMOOTHED RELATION BETWEE	0.85	1.87 SON O	-	_	× × ×	××
(SHOWN IF THERE ARE 10 OR M		AD, IN	1,000	, ,	× I	_
STREAMFLOW E INDICATED PERCENT	TAGE OF TIME	PO PO	Ē		$\stackrel{\frown}{\times}$ \times \times	<u>-</u>
75 PERCENT	25 PERCENT		100	10	100	1,0
				STREAMFLOW.	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	29 1 9 1 1 1 1 1 1 1
LOW FLOW HIGH FLOW	
○ UNCENSORED VALUE □	_γ 20 - Ο
∀ 'LESS-THAN' VALUE	15 - 01 - 02 - 03 - 03 - 03 - 03 - 03 - 03 - 03
	OK F
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	Ϋ́Θ Ϋ́Θ ΕΣ
LOW FLOW 6 3 ND	CONCENTR LIGRAMS 10 - 01
HIGH FLOW 6 4 ND	⊕ WILLI
	Z 5

0

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR


0

25 -

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

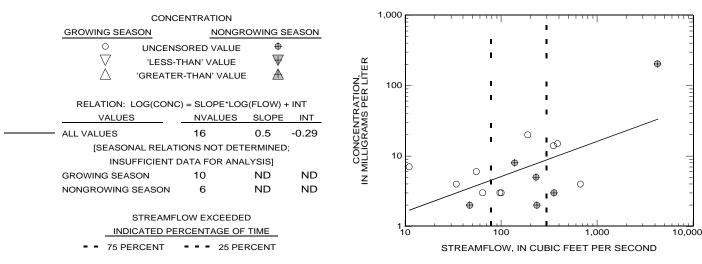
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

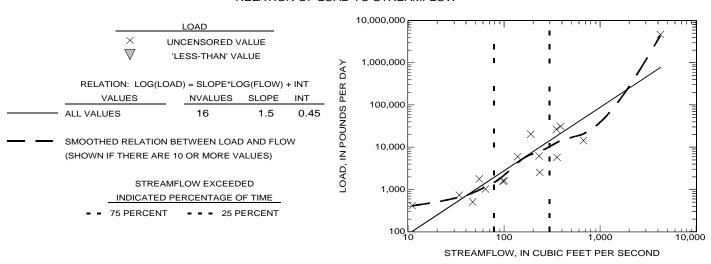
$egin{array}{ccc} & LOAD & & & & & & & & & & & & & & & & & & &$	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 24 1.23 1.54	4 100,000 X X X X X X X X X X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	0 1,000
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	100 ₁₀ 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			100			ı	1 1	1		1	1 1	- 1	1	1 1	
LOW FLOW			HIGH FLOW	, =													
\bigvee_{\wedge}	JNCENSOREI 'LESS-THAN' REATER-THA	VALUE	⊕ ₩ Æ	CONCENTRATION, IN MILLIGRAMS PER LITER	80	_											_
TREN	NDS IN CONC	ENTRAT	ION	AATIO	60	_	$_{\oplus}^{\oplus}$										-
VALUES	NVALUES	NWYS	SLOPE	N N			₩										
LOW FLOW	5	3	ND	S C C C C C C C C C C C C C C C C C C C	40	_											
HIGH FLOW	6	4	ND	ES													
				~\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}			•										
				2	20	_	•										0
								₽								਼ਰ	₽
					0	76 77	78 79	80 81	82.8	3 84	85.8	6 87	88 2	Ra a	0 91	92 0	13
						10 11	10 19	00 01	02 (5 04	00 0	0 01	00 (,, ,	0 91	J2 3	,,,


WATER YEAR

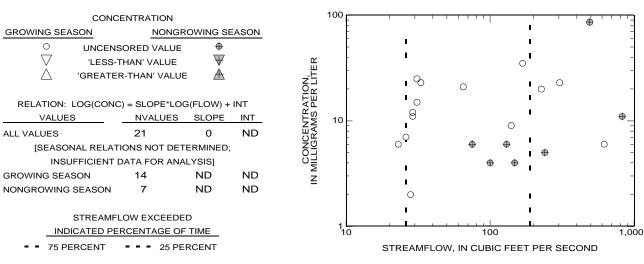
100 -


APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			250		1 1	1 1	ı	ı	ı	1	ı		ı	ı	1	
LOW FLOW			HIGH FLOW															
, ^	NCENSOREI LESS-THAN' REATER-THA	VALUE	⊕ ₩ Æ	ON, LITER	200	_	0											_
TDEN		ENTRAT	ON	ATION, PER LIT	150	_												_
VALUES	IDS IN CONC NVALUES	NWYS	SLOPE_	AMS														
LOW FLOW	5	4	ND	NCE IGR/	100	_												_
HIGH FLOW	5	4	ND	CONCENT														
				Ž	50	L												_
					0						1						o ⁽	⊕ ##₽

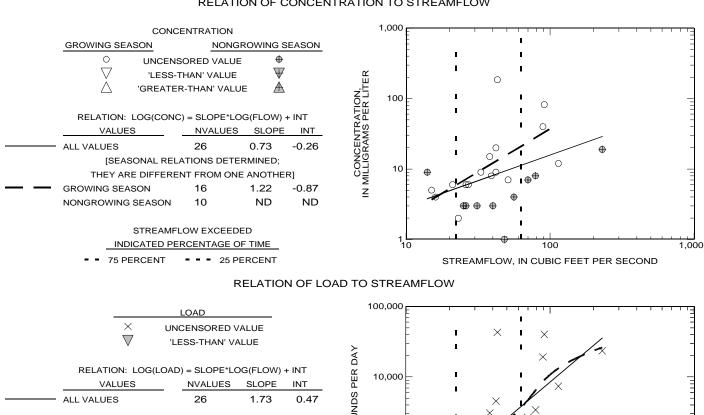
APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

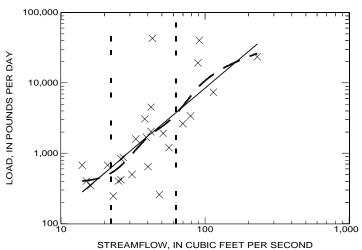
RELATION OF LOAD TO STREAMFLOW

	1,000,000 F
LOAD × UNCENSORED VALUE	
√ 'LESS-THAN' VALUE RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	Y 100,000
VALUES NVALUES SLOPE INT	- " ×i × ×i × ^ = 1
———— ALL VALUES 21 1.15 1.46	10,000 × × × × × × × × × × × × × × × × ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	NA XX XX I
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	1,000 P
75 PERCENT 25 PERCENT	100 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	,	00			ı	1	1	7			- 1	- 1		Т
LOW FLOW HIGH FLOW				\oplus										
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ★	Ë.	80 –		Ψ										
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	SPA	60 –												
LOW FLOW 2 2 ND HIGH FLOW 6 3 ND	CONCENT IN MILLIGRAM	40 —												
	Z	20		\oplus_{\bigoplus}										
				⊕									0	•

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.


[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

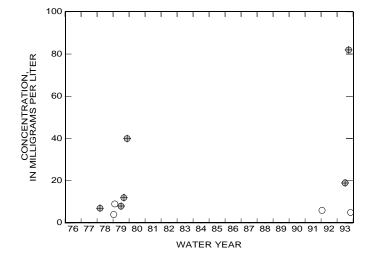
> STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION									
LOW FLOW			HIGH FLOW						
٥ ر	JNCENSOREI	O VALUE	+						
∇	√ 'LESS-THAN' VALUE								
	REATER-THA	N' VALUE	■ ▲						
TRE	NDS IN CONC	ENTRATI	ON						
VALUES	NVALUES	NWYS	SLOPE						

6

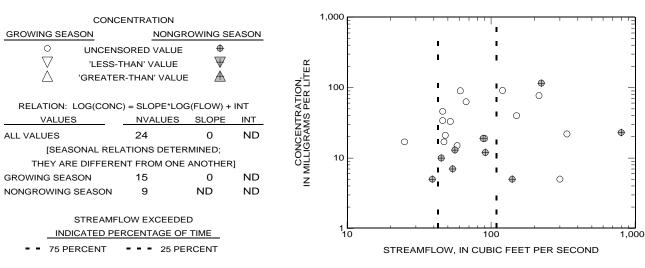
3


3

ND

ND

LOW FLOW


HIGH FLOW

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

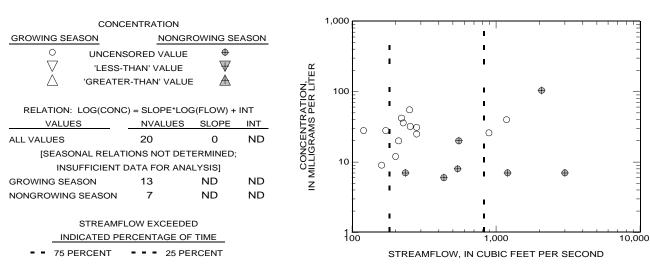
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	OONDO LANGE TO THE PROPERTY OF
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	1,000 1,000 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTE	RATION			250		ı	ı	I	ı	ı	1	ı	ı	-	1	ı	-	ı	
LOW FLOW			HIGH FLOW																	
Ο υ	NCENSORE	D VALUE	⊕	~	200	_														
∇	LESS-THAN	' VALUE	$\overline{\Psi}$	ËR																
△ 'GF	REATER-TH	AN' VALUE	■ ▲	ž5																
				음골	150															
TREN	IDS IN CON	CENTRAT	ION	S.A.	.00															
VALUES	NVALUES	NWYS	SLOPE	CONCENTRATION, MILLIGRAMS PER LIT				⊕												
LOW FLOW	2	2	ND	38.5	100	_		•												
HIGH FLOW	8	3	ND	ĘŠ																
				Ŭ≣					Φ											
				Z	50															
								0)											
								⊕	Ф											

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD				10,000,000	T	1 1 1	 	1 1	
$\stackrel{ imes}{ riangledown}$	UNCENSORED VA			>	-	I I		I I		
RELATION: LOG(I	LOAD) = SLOPE*LO	G(FLOW)	+ INT	ER DA	1,000,000			ı	×	_
VALUES	NVALUES	SLOPE	INT	PER	F	ı		1 ×	_ >	
ALL VALUES	20	0.95	2.16	SOZ				× /		
SMOOTHED RELATION (SHOWN IF THERE AR			w), IN POUI	100,000	>	× ×	ı ×		-
STRE	AMFLOW EXCEEDS	≣D		OAL	10,000	$\times_{L} \times$	×	ı		-
INDICATE	D PERCENTAGE O	F TIME		_	Ē			ı		
75 PERCEN	NT = = = 25 PE	ERCENT			-	1		Ī		
					1,000			1,000		10,
							EAMFLOW.	IN CUBIC FI	EET PER SE	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			250		1 1		ı			ı	-	1	1	ı	ı	
∇	JNCENSOREI 'LESS-THAN' REATER-THA	D VALUE	HIGH FLOW	ATION. PER LITER	200	-												-
TRE	NDS IN CONC	ENTRAT	ION	RATIO S PER	150	-												-
VALUES LOW FLOW HIGH FLOW	NVALUES 3 5	NWYS 2 3	SLOPE ND ND	CONCENTR	100	_	•	₽										_
				Z Z	50	_		⊕										_
					0	76 77	78 7	9 80	81 82	2 83	84 8	5 8	6 87	7 88	89	90	91 9	○ ∰ 12 93

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

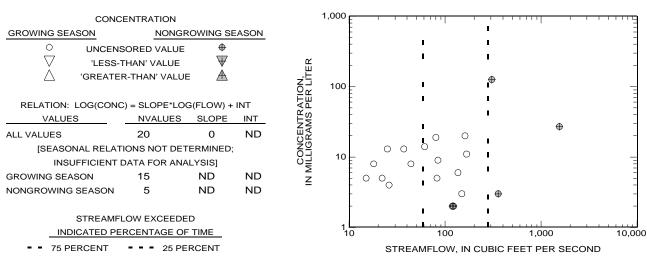
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION				100	 	1		- 		Т
VING SEASON	NONGR	OWING SEA	ASON		ŧ				ı		
LESS-T	ORED VALUE 'HAN' VALUE R-THAN' VALUE	⊕		ATION, PER LITER	‡ †				1		
ELATION: LOG(CONC) = SLOPE*LOG NVALUES	G(FLOW) + I SLOPE	NT INT_		10 -	⊕			1 1	0	
VALUES	15	0	ND	CONCENTR IN MILLIGRAMS	Ē			⊕	_		
[SEASONAL RELATI	ONS NOT DET	ERMINED;		<u>2</u> 9	ţ			0			
INSUFFICIENT D	ATA FOR ANA	LYSIS]		ŏ⋥	+			$\circ \infty$	•		
WING SEASON	10	ND	ND	z	+			⊕	•		
GROWING SEASON	5	ND	ND	_	-	0	0	© O	ı		
STREAMFL INDICATED PER	OW EXCEEDE				1 0.1		 0	10	100		_
75 PERCENT	25 PE	RCENT				STREAM	/IFLO	W, IN CUBIC	FEET PER SE	COND	

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 15 1.17 1.12 SNOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10 X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				25	I	T	ı	ı		ı	1		1	-	1	-	1	
	NCENSOREI 'LESS-THAN' REATER-THA	VALUE	HIGH FLOW	_	ION, R LITER	20	_													_
VALUES LOW FLOW	IDS IN CONC NVALUES 0 1	ENTRATI NWYS 0 1	ON SLOPE ND ND		CONCENTRATION, IN MILLIGRAMS PER LITER	10														+
HIGH FLOW	'	·	ND		IN MICI	5	_													_
						0	76 7	7 78	79 8	0 81	82 8	33 84	85	86	87	88 8	39 9	90 9	92	93

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 20 1.23 1.2	10,000 L X X L X X L X X L X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	NO I NOOD
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

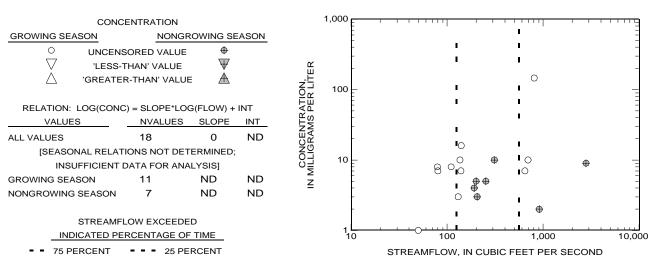
	CONCENTR	ATION				250		1 1	- 1	-	1 1		1	1	1	1	1	1	T		\neg
LOW FLOW	CONCENTIO	ATION	HIGH FLOW	-																	
$\overline{}$	NCENSORE		₩		R	200	_														-
Ň	REATER-THA		A		ATION, PER LITER																
TREN	IDS IN CONC	ENTRAT	ION			150	_														=
VALUES	NVALUES	NWYS	SLOPE		CONCENTE IN MILLIGRAMS				⊕												
LOW FLOW	7	4	ND			100	_														-
HIGH FLOW	3	2	ND		ᅙ																
					Σ																
					≥	50	_														-
									⊕												
						_		. 9	28										. с	Ω	40
						0	76 7	7 78	79 8	0 81	82	83 8	34 8	5 8	6 8	7 88	89	90	91	92	93

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION				100 F		ı		
GROWING SEASON	NONGE	ROWING SE	ASON		F			ı	=
O UNCENS	ORED VALUE				F	ı		I	_
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$		H R	F	ı		ı	_
△ 'GREATE	R-THAN' VALUI			Ž T T	t	ı		Ī	-
				드	Ī	1		1	_
RELATION: LOG(CONC	() = SLOPE*LO	G(FLOW) +	INT	Α					
VALUES	NVALUES	SLOPE	INT	ËS	10 —	_		•	_
ALL VALUES	1	ND	ND	CONCENTRATION, N MILLIGRAMS PER LIT	Ē	1 1	_	ī	=
[SEASONAL RELAT	IONS NOT DET	ERMINED;		공익	t		0		
INSUFFICIENT I	DATA FOR ANA	LYSIS]		SI	-			•	-
GROWING SEASON	1	ND	ND	Z	-	•		•	-
NONGROWING SEASON	0	ND	ND	=	-	•			_
		_				ı		ı	
STREAMF	OW EXCEEDE	:D			1				
INDICATED PE	RCENTAGE OF	TIME			10	100			1,000
■ ■ 75 PERCENT	25 PE	RCENT				STREAMFLOW, IN CUBIC F	EET PER	SECOND	


RELATION OF LOAD TO STREAMFLOW

						100,000					
		LOAD				· F					
	\times	UNCENSORED \	/ALUE			ļ.	ı	1		·	1
	∇	'LESS-THAN' V	ALUE			-					-
					DΑ	Ī	'			•	1
RELATIO	ON: LOG	(LOAD) = SLOPE*LO	OG(FLOW)	+ INT	Ω Π	Ī	·	•			1
VAI	LUES	NVALUES	SLOPE	INT	PE	-		<u>.</u>			-
ALL VALUE	S		ND	ND	DS						
					Ξ	10,000 —	·	•		•	_
SMOOTHER	RELATI	ON BETWEEN LOA	D AND FLC	w	ŏ	E			×	_	3
(SHOWN IF	THERE A	ARE 10 OR MORE V	ALUES)		Z	-			^	-	-
(6116771711	E.	THE TO OIL MOILE V	(LOLO)		<u> </u>					ı	1
	CTD	EAMFLOW EXCEED)ED)A[_	1			I	
					2		ļ				
_	INDICAT	ED PERCENTAGE (JF TIME			T T				ı	-
7	5 PERCE	NT 25 F	PERCENT				!			ı	
						1,000		100			1,000
							STREAMFLOW, IN	CUBIC FEE	ET PER S	SECOND	

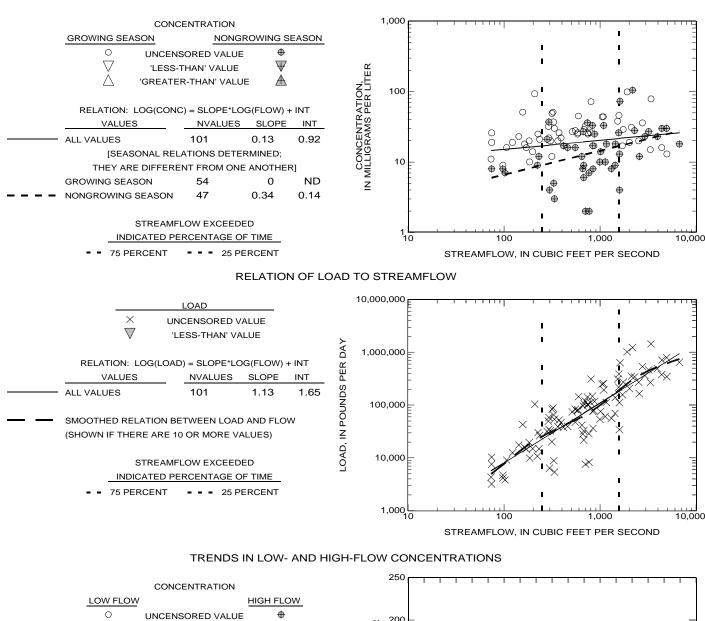
APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		1,000,000	- , , , , , , , , , , , , , , , , , , ,		
× UNCENSORED VALUE		F			=
LESS-THAN' VALUE		<u>,</u>	· I	· I	
		100,000			/×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOV	V) + INT	K. [I	1	
VALUES NVALUES SLOPE			ī		=
ALL VALUES 18 1.33	0.77	SQ -	-	. ×/^	-
		5 10,000 ⊨	×	\sim \sim	=
SMOOTHED RELATION BETWEEN LOAD AND F	LOW	2	×		3
(SHOWN IF THERE ARE 10 OR MORE VALUES)		Z -	*/~	*	7
		ģ	, î		1
STREAMFLOW EXCEEDED		1,000	<i>1</i> .		
INDICATED PERCENTAGE OF TIME	_	-	/		3
75 PERCENT 25 PERCEN	г	Ļ	×	ı	1
		100	100	1,000	10,000
			STREAMFLOW,	IN CUBIC FEET PER	SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				250		1	1 1	1	1	1 1	-	-	1	Т		ı	-	
LOW FLOW			HIGH FLOW	<u>-</u>																
\bigvee_{Λ}	INCENSOREI 'LESS-THAN' REATER-THA	VALUE	⊕ ₩ ± <u>A</u>	-	PER LITER	200	_													-
TREN	IDS IN CONC	ENTRAT	ON		Υ (Λ	150	_		⊕											_
VALUES	NVALUES	NWYS	SLOPE	<u>!</u>	ZΫ															
LOW FLOW	4	3	ND	Š	CONCENT	100	_													_
HIGH FLOW	5	3	ND	Ś	בָּׁב															
				`	ັ≣															
					Z	50	_													_
						0	76 7	7 78	79 80	0 81	82	83	84 8	85 8	6 8	7 88	8 89	90	91 9	<u>∞</u> 92 93

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

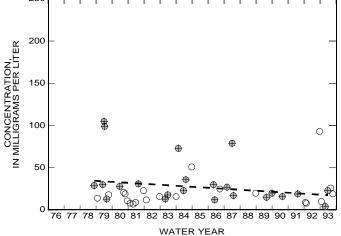
RELATION OF CONCENTRATION TO STREAMFLOW

√ 'LESS-THAN' VALUE									
△ 'GREATER-THAN' VALUE									
TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE						

10

12

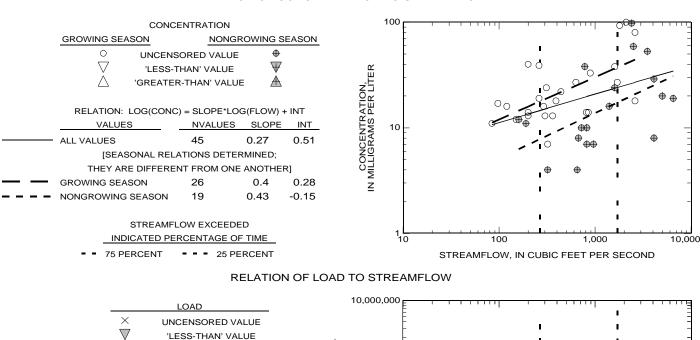
ND


-1.17

21

23

LOW FLOW


HIGH FLOW

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

X UNCENSORED VALUE

VLESS-THAN' VALUE

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

VALUES

NVALUES

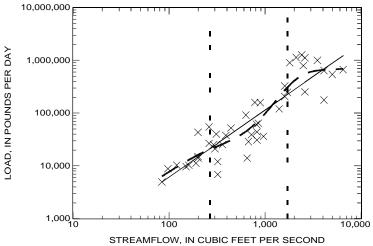
NVALUES

SLOPE INT

ALL VALUES

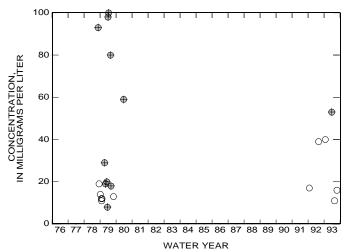
45

1.27


1.25

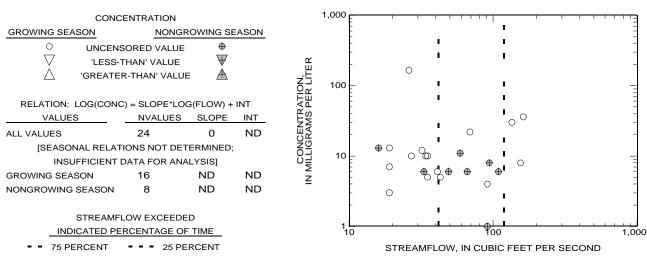
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOW	<u> </u>	HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle ,	GREATER-THAN' VALUE	\triangle
TR	ENDS IN CONCENTRATION	ON


TREINDS IN CONCENTRATION												
VALUES	NVALUES	NWYS	SLOPE									
LOW FLOW	11	4	ND									
HIGH FLOW	11	4	ND									

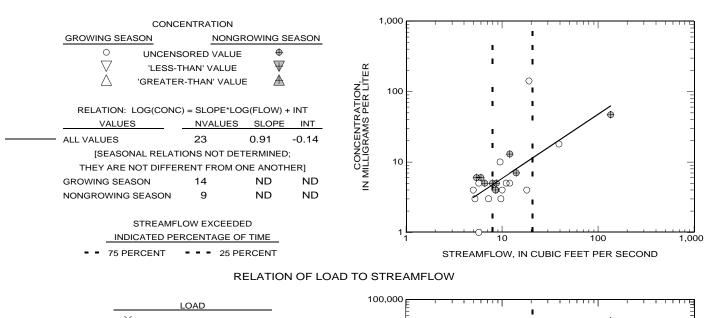
APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100 ⊁ ∀	00,000	× '	, , , ,	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	IDS PER D	0,000	1	×	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	o, IN POUN	1,000	× × × × × × × × × × × × × × × × × × ×	×××	-
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT - 25 PERCENT	LOAE	- - - -	× 1 ×	× '	- - -
		100	STREAMFLO	100 DW, IN CUBIC FEET PE	1,000 R SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCE	NTRATION		250		1 1 1	1	Т Т	1	г г	-1	1 1	1	1	1 1	\neg
LOW FLOW UNCENSO LESS-TI		H FLOW PER LITER PER LITER	200	_											_
	ONCENTRATION	TRATIO 18 PER	150	_	0										-
VALUES NVALUES	SES NWYS SLC 6 3	ND OO ND	100	_											_
		<u>Z</u>	50	_	4)								+	_
			0	76 7	7 78 79	0 80 81	82 8	3 84	85 8	36 87	88	89 9	`	-	⊕ ⊃

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

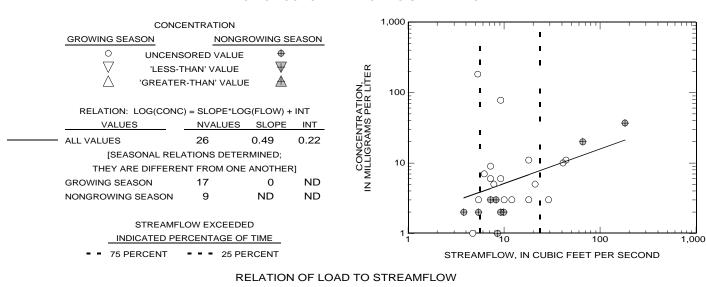
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000 L L X L L L L L L L L L L L L L L L
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	N N N N N N N N N N N N N N N N N N N
	10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		30			
LOW FLOW HIGH FLOW			•		
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ▲	ATION, PER LITER	40 —			
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	Ľω	30 –			
LOW FLOW 9 4 ND HIGH FLOW 2 1 ND	CONCENT IN MILLIGRAMS	20 -	⊕		
			8 0		00


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

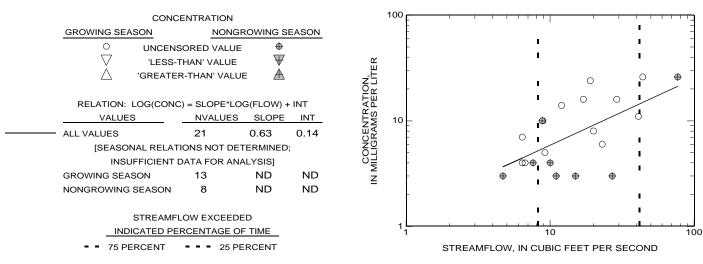
50 -

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD	100,000
X UNCENSORED VALUE √ 'LESS-THAN' VALUE	¥ 10,000 ×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000 × × × × × × × × × × × × × × × × ×
ALL VALUES 26 1.49 0.95	9 5 1,000 ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	Z X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	Q 100
75 PERCENT 25 PERCENT	10 10 100
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				250	-	1	-	1	1 1	-	-	-	1		-	-	1	
LOW FLOW			HIGH FLOW	<u>-</u>																
<u>○</u> ∟	INCENSORE	D VALUE	+		œ	200	_													_
,	'LESS-THAN		₩		İTER				0											
	REATER-THA	AN' VALUI	E A	<u> </u>	PER LIT															
TREN	NDS IN CONC	ENTRAT	ION			150	_													-
VALUES	NVALUES	NWYS	SLOPE	E Z	IN MILLIGRAMS															
LOW FLOW	5	3	ND	Ö	GR.	100	_													_
HIGH FLOW	5	3	ND	Ō																
					∑ 7															
					=	50	-		4											-
									⊕ . **											
						0	70 -			2 04		00 6	4.0				00.6	20.0	1 00	<u>_</u>
							76 7	7 78	79 8) 81	82	83 8	34 8	5 86	87	88	89 9	90 9	1 92	2 93

APPENDIX 4. Relations of constituent concentration and load to streamflow and trends in concentration with time SUSPENDED SEDIMENT 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		100,000 E		
		Ė	·	· •
× UNCENSORED VALUE		Ė	I	ı =
V 'LESS-THAN' VALUE		-	•	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW)	+ INT Y	10,000		· × / ×
VALUES NVALUES SLOPE	INT H	E	<u> </u>	
ALL VALUES 21 1.63	0.88	-	•	\times \times
SMOOTHED RELATION BETWEEN LOAD AND FLO	0.88 88.0 W	1,000	× × × × × × × × × × × × × × × × × × ×	×
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	LOAD	100	**\``^	·
75 PERCENT 25 PERCENT		10	10	100
			STREAMFLOW, IN CUBIC FE	ET PER SECOND

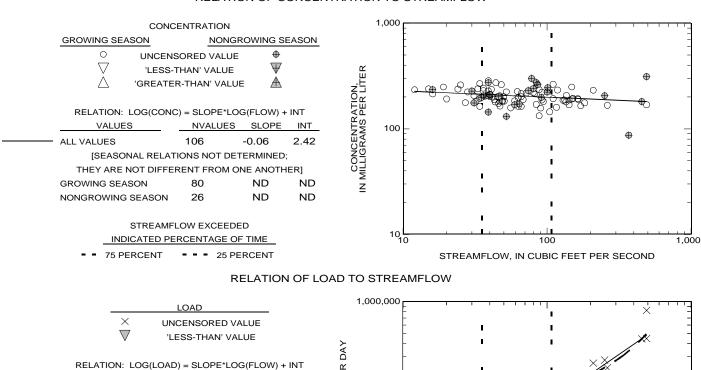
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			- 1	 		' '				'		
LOW FLOW			HIGH FLOW											
∑ 'GF	INCENSOREI 'LESS-THAN' REATER-THA NDS IN CONC	VALUE AN' VALUE	_	ION, R LITEF	40 - 30 -	+							4	_ _
VALUES	NVALUES	NWYS	SLOPE	ZZ		Ψ								
LOW FLOW	5	4	ND	Ŭ <u>V</u> 2	20 –									_
HIGH FLOW	2	2	ND	OO COO	10 –									
												()	
						08	3					С)	
						 								- 1

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

50


Appendix 5 Dissolved solids

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

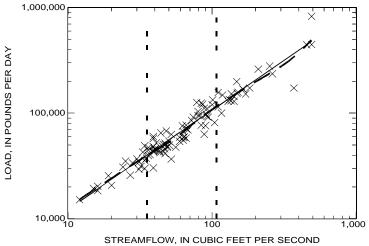
RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

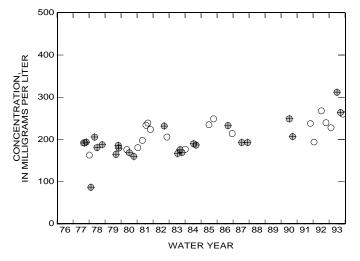
ALL VALUES

NVALUES


106

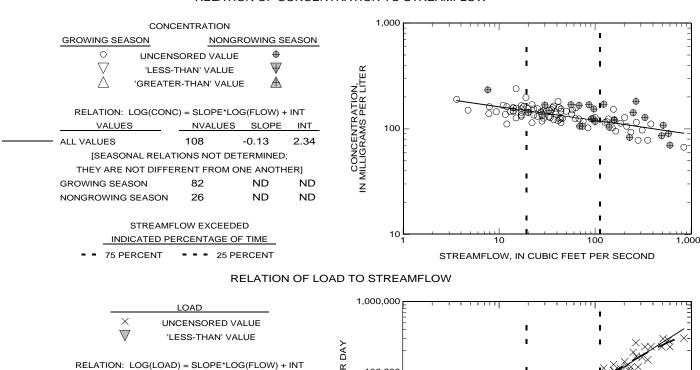
SLOPE

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
o ▽	UNCENSORED VALUE	⊕ ₩
	'GREATER-THAN' VALUE	<u> </u>
TR	ENDS IN CONCENTRATI	ON


TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	19	11	ND				
HIGH FLOW	24	11	ND				

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

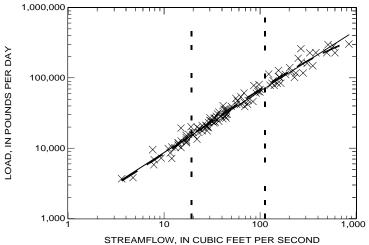
RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

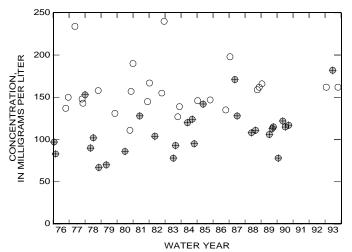
ALL VALUES

NVALUES


108

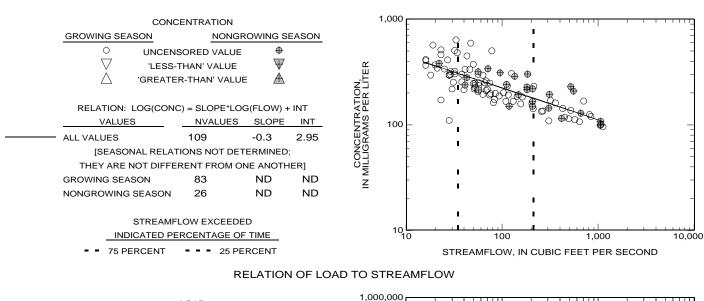
SLOPE

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
Δ,	GREATER-THAN' VALU	E A


TRENDS IN CONCENTRATION							
VALUES	NVALUES	SLOPE					
LOW FLOW	25	14	ND				
HIGH FLOW	28	15	0				

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

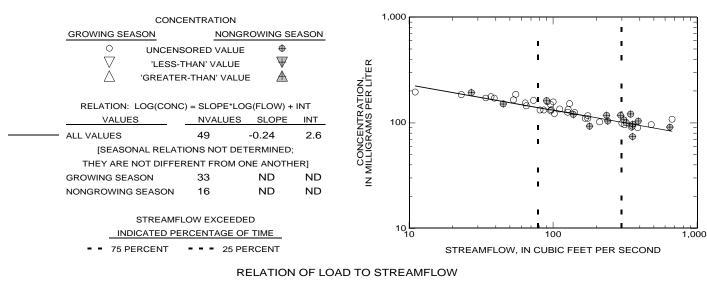
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

$oxed{ imes}$ UNCENSORED VALUE $oxed{\mathbb{V}}$ 'LESS-THAN' VALUE	1,000,000	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + VALUES NVALUES SLOPE ALL VALUES 109 0.7	NT	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	Z E ** X *	= = = = = = = = = = = = = = = = = = = =
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10,000	10,000
	STREAMFLOW, IN CUBIC FEET PER SECON	1D

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION				
LOW FLOW HIGH FLOW				
O UNCENSORED VALUE \forall VIESS-THAN' VALUE \forall Oreater-than' VALUE	ON, LITER	800		_
	ATION, PER LI	600	<u> </u>	_
TRENDS IN CONCENTRATION	α΄ (0			Ч
VALUES NVALUES NWYS SLOPE	ΣŞ		0000	
LOW FLOW 25 14 ND	CONCENT MILLIGRAMS	400	_ 0_0 0 _	_
HIGH FLOW 25 14 0	ĔŖ			
	≣		0 8 00	0
	Z	200	A () A	Φ_


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

1,000

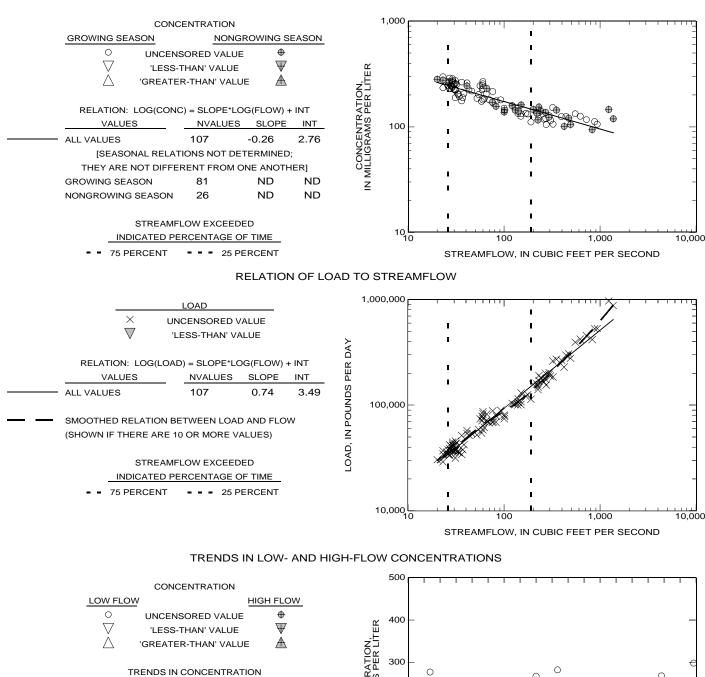
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	>	1,000,000	1 1	, , , , , , , , , , , , , , , , , , ,
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW)	+ INT	100,000 —	1 1	
SMOOTHED RELATION BETWEEN LOAD AND FLO (SHOWN IF THERE ARE 10 OR MORE VALUES)	W WOL	-		, i
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	9	10,000		
		10	100 STREAMELOW IN CUBIC F	1,000 FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			200		ı	1 1	1	I		- 1	- 1	'	'	'			'	'	
LOW FLOW			HIGH FLOW																		
\bigvee_{Λ}	NCENSOREI 'LESS-THAN' REATER-THA	VALUE		ATION, PER LITER	200		0)				С	8						0	O	00
	IDS IN CONC			TRA IS P	.00		_						0								
VALUES	NVALUES	NWYS	SLOPE	ÄΝ										₽							
LOW FLOW	12	7	ND	CONCENTR IN MILLIGRAMS	100	-ф	Ф.						4	₽							Φ_
HIGH FLOW	14	6	ND	ĖŖ			⊕ 0	₽					Ψ							⊕(∌
				∑		₩															
				Z	50	F															_
					0	ــِــا															لي
						76	77 78	79	80 81	82	83	84	85 8	36	87	88	89	90	91	92	93


WATER YEAR

250 -

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

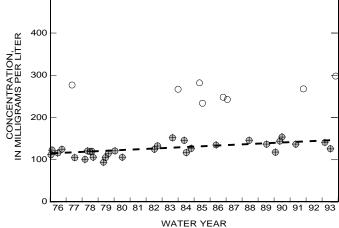
VALUES

LOW FLOW

HIGH FLOW

NVALUES NWYS

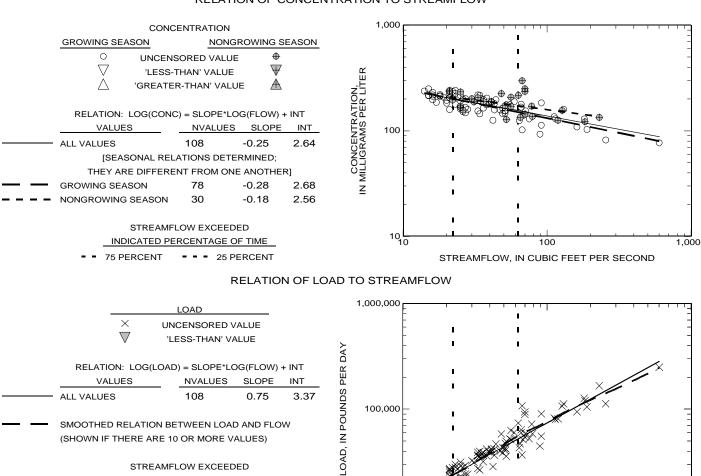
30


7

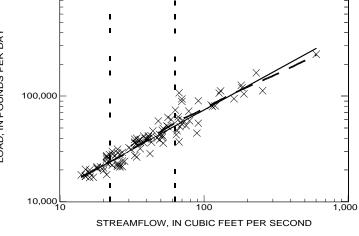
14

SI OPF

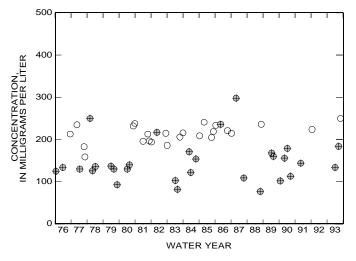
ND


1.78

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

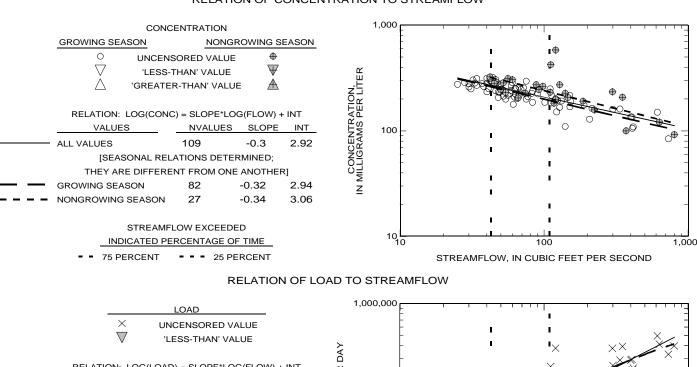

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME

25 PERCENT 75 PERCENT

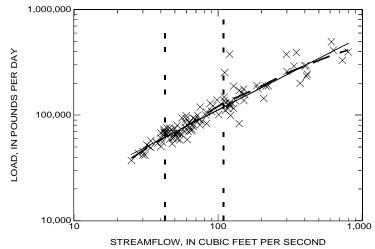
CONCENTRATION						
LOW FLOW		HIGH FLOW				
0	UNCENSORED VALUE	Φ				
∇	'LESS-THAN' VALUE	$\overline{\Psi}$				
Δ,	GREATER-THAN' VALU	E A				


TRENDS IN CONCENTRATION							
VALUES	NVALUES	SLOPE					
LOW FLOW	24	12	ND				
HIGH FLOW	30	15	0				

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

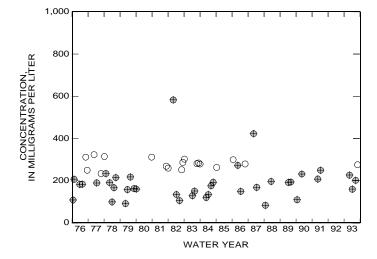
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				
LOW FLOW			HIGH FLOW			
٥ ر	INCENSOREI	O VALUE	⊕			
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'GI	REATER-THA	N' VALUE	<u> </u>			
TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			

39

10

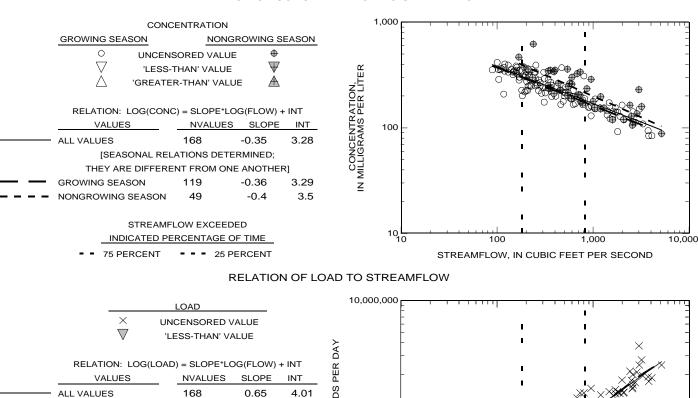
15


ND

0

LOW FLOW

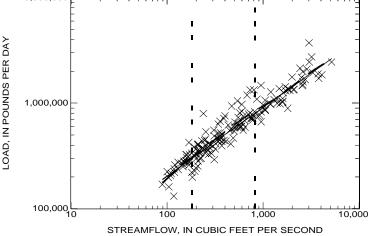
HIGH FLOW


CONCENTRATION

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

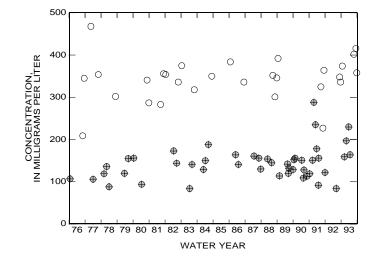
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
Δ,	GREATER-THA	N' VALUE	■ 🛦
TRI	ENDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE

14

16

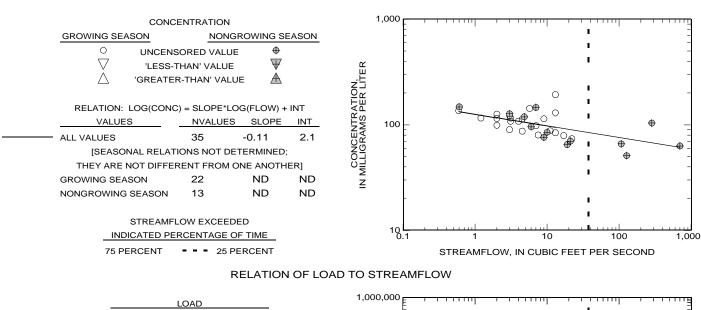
0


O

29

47

LOW FLOW


HIGH FLOW

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

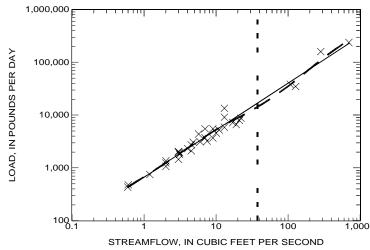
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

× UNCENSORED VALUE

□ 'LESS-THAN' VALUE

 $\begin{tabular}{lllll} RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT \\ \hline VALUES & NVALUES & SLOPE & INT \\ \hline ALL VALUES & 35 & 0.89 & 2.83 \\ \hline \end{tabular}$


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT

- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

250

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
۰ ر	JNCENSOREI	O VALUE	+
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
	REATER-THA	'N' VALUE	■ ▲
TRE	NDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

4

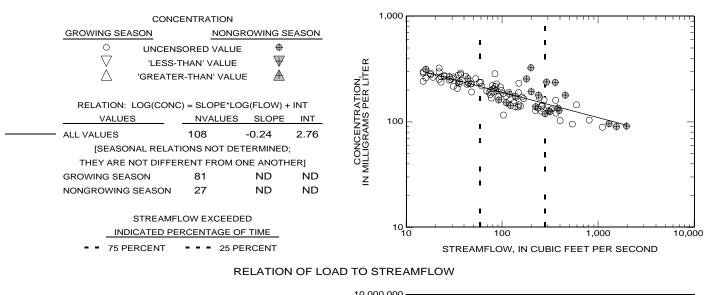
0

3

ND

ND

LOW FLOW


HIGH FLOW

	230		1	1 1	ı	ı	1	1	1	1	1	1	1	1	1	1	
TER	200	_															_
CONCENTRATION, IN MILLIGRAMS PER LITER	150	_															_
CONCEN	100	_															€_
N N	50	•	+														
	0	76 7	7 78	79 8	30 8	1 82						88	89	90	91	92	93
							VVA	ΝE	R YI	EAF	₹						

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

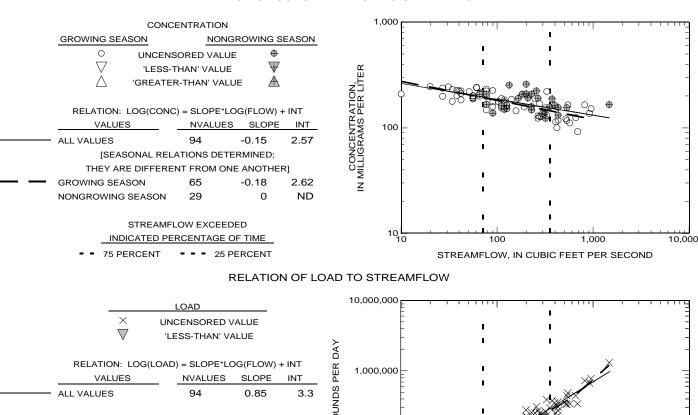
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				10,000,000		, , , , , , , , , , , , , , , , , , , 	
$\stackrel{ imes}{ riangledown}$	UNCENSORED \ 'LESS-THAN' V			ΑΥ		1	i	=
RELATION: LOGI VALUES ALL VALUES	(LOAD) = SLOPE*LO	SLOPE 0.76	+ INT INT 3.5	INDS PER D	1,000,000	! !	1 1 × ***	
SMOOTHED RELATION (SHOWN IF THERE A		ALUES)	w	DAD, IN POU	100,000			-
	ED PERCENTAGE () J	10,000		I I U 1,00 1,00	0 10,000
							OW, IN CUBIC FEET PE	•

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

C	ONCENTRATION			500	1 1	ı	1 1	1	1 1	1	1 1	1 1	- 1	1 1	
, LE	CENSORED VALUE ESS-THAN' VALUE ATER-THAN' VALUI	HIGH FLOW	ATION, PER LITER	400	_										_
	S IN CONCENTRAT	ION SLOPE	α	300	- 00	0		000	o o &	0	00 •	0 8)	0	
LOW FLOW HIGH FLOW	38 16 18 12	0 ND	CONCENT	200	- +		0	(2	_	0*0	Ü	0		_
			Z	100	⊕ · ·	⊕ ⊕ ⊕ ⊕	⊕		+	Φ	⊕			⊕	_
				0	1 1	- 1	1 1	1	1 1			1 1	1		

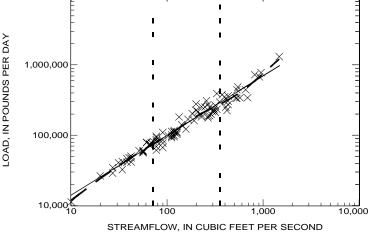

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

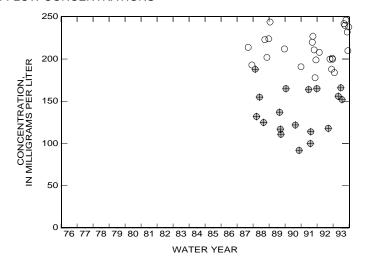
APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

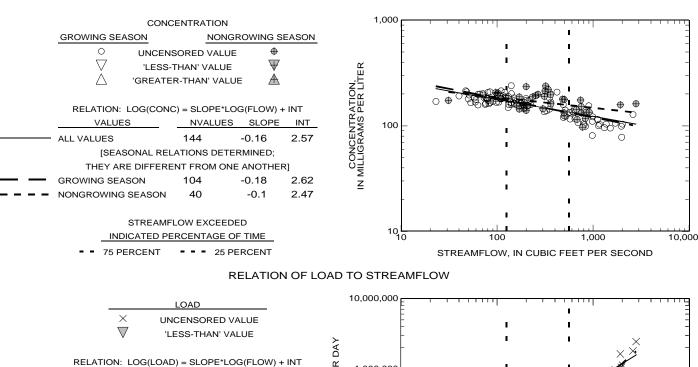


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT


	CONCENTR	ATION				
LOW FLOW HIGH FLOW						
Ο υ	NCENSORE	D VALUE	⊕			
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'GF	REATER-THA	N' VALUE	\blacksquare			
TREN	DS IN CONC	ENTRAT	ION			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	25	7	ND			
HIGH FLOW	18	6	ND			

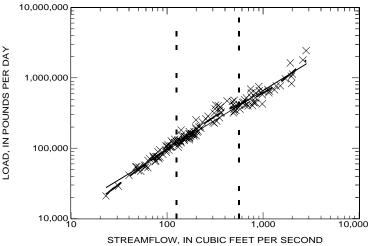
APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

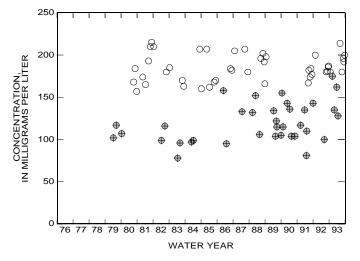
 VALUES
 NVALUES
 SLOPE
 INT

 ALL VALUES
 144
 0.84
 3


 SMOOTHED RELATION BETWEEN LOAD AND FLOW

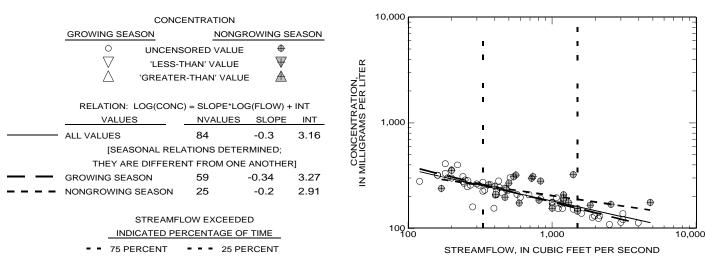
(SHOWN IF THERE ARE 10 OR MORE VALUES)

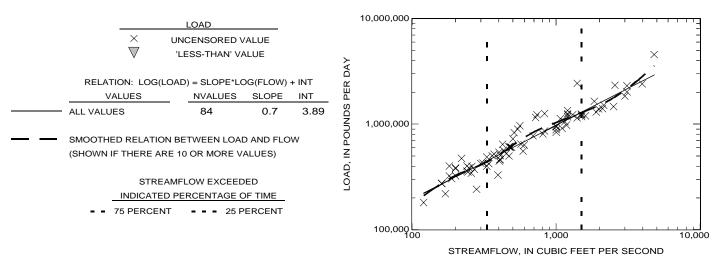
STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
	UNCENSORED VALUE 'LESS-THAN' VALUE	₩
Δ,	GREATER-THAN' VALUE	


TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE						
LOW FLOW	45	13	ND						
HIGH FLOW	36	13	ND						


APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

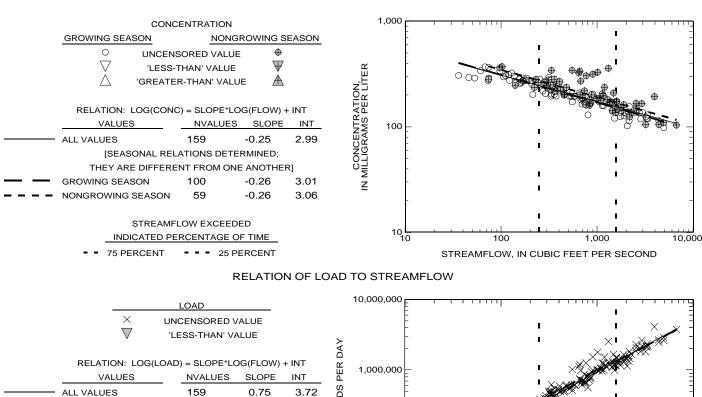
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRA	TION			300		1	- 1	-	1	- 1	- 1	-1		7	1	1	1
LOW FLOW U ,	NCENSORED LESS-THAN' V REATER-THAN	VALUE 'ALUE	HIGH FLOW ⊕ ₩ Æ	ATION, PER LITER	400	_									0		a	, 00,
TREN VALUES	DS IN CONCE	NTRATION	ON SLOPE	<u>α</u> ω	300	=)) ()		C) (
LOW FLOW HIGH FLOW	22 16	6 4	ND ND	CONCENT	200	_									Ŭ 4	~ ⊕⊕	· •)
				Z	100	-									4	Ф #	\$ \$	

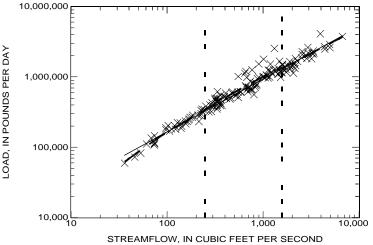

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

500

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

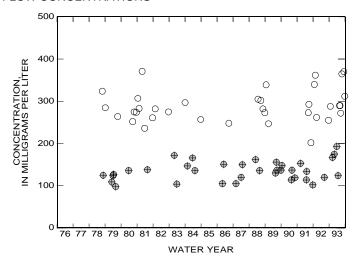
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



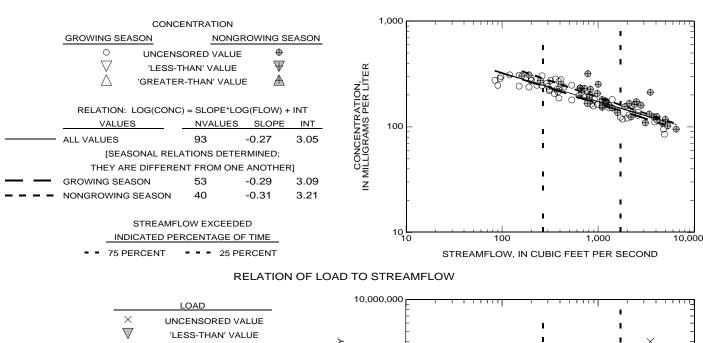
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

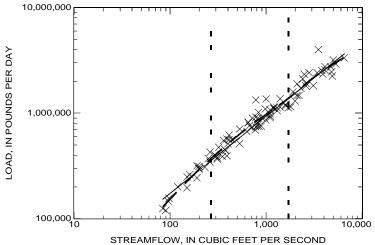
75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	+
V.	'LESS-THAN' VALUE	₩.
\triangle	'GREATER-THAN' VALU	E A
тр	ENDS IN CONCENTRAT	ION

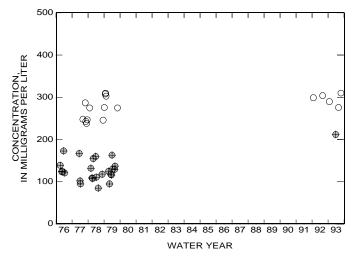

TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE						
LOW FLOW	36	13	0						
HIGH FLOW	36	14	0						

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

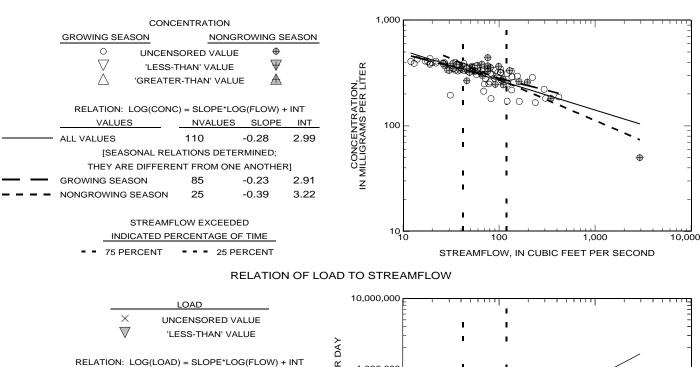

RELATION OF CONCENTRATION TO STREAMFLOW

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLO	<u>W</u> <u>F</u>	HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle	'GREATER-THAN' VALUE	\triangle
_		


TRENDS IN CONCENTRATION							
VALUES	VALUES NVALUES NWYS SI						
LOW FLOW	17	5	ND				
HIGH FLOW	25	5	ND				

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

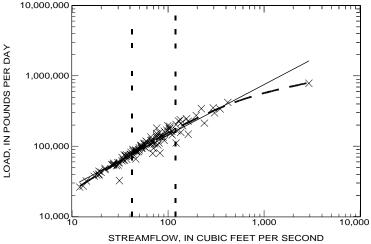
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

ALL VALUES

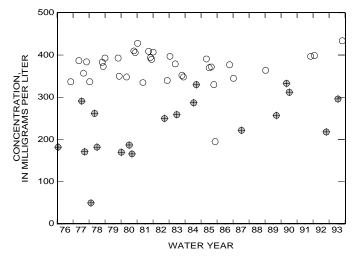
NVALUES

110


SLOPE

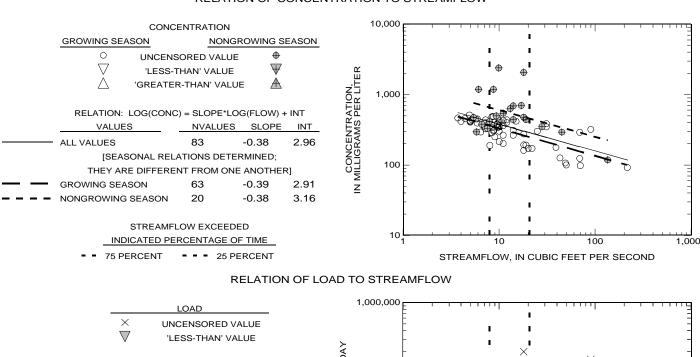
0.72

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

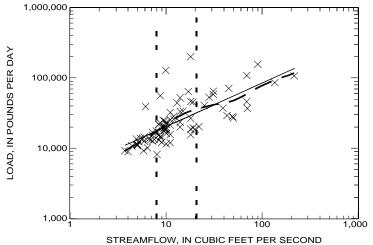
	CONCENTRATION	
LOW FLOW	•	HIGH FLOW
0	UNCENSORED VALUE	•
\vee	'LESS-THAN' VALUE	\forall
\triangle	'GREATER-THAN' VALU	E A
тр	ENDS IN CONCENTRAT	ION


TRENDS IN CONCENTRATION							
VALU	JES	NVALUES	NWYS	SLOPE			
LOW F	LOW	35	15	0			
HIGH F	LOW	19	12	0			

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

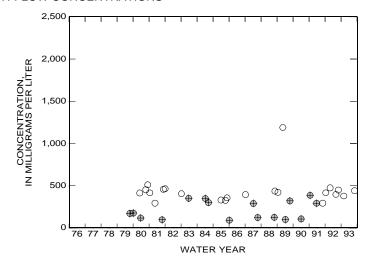
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


 $\begin{array}{c|cccc} \text{RELATION: LOG(LOAD)} = \text{SLOPE*LOG(FLOW)} + \text{INT} \\ \hline \text{VALUES} & \text{NVALUES} & \text{SLOPE} & \text{INT} \\ \hline \text{ALL VALUES} & 83 & 0.62 & 3.69 \\ \end{array}$

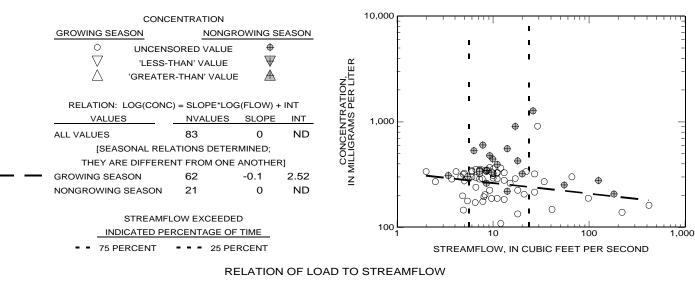
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

	CONCENTRATION	
LOW FLOV	<u>v</u>	HIGH FLOW
0	UNCENSORED VALUE	+
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle	'GREATER-THAN' VALUE	\blacksquare


TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	22	10	ND			
HIGH FLOW	16	11	ND			

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

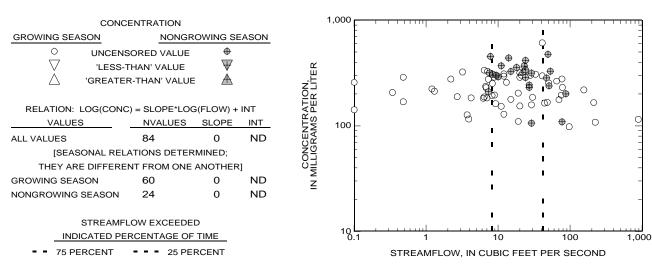
RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	00,000 - X X X X X X X X X X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000 - 10,
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	
	1,000 1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
O UNCENSORED VALUE \forall VIESS-THAN' VALUE \forall OGREATER-THAN' VALUE	Z- Z- Z- Z- Z- Z- Z- Z- Z- Z- Z- Z- Z- Z	_
TRENDS IN CONSENTS ATION	VE NO PH 1,500	-
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	Z S	+
LOW FLOW 14 9 ND HIGH FLOW 13 11 ND	CONCENT IN MILLIGRAM	— —
	Z 500	-

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

2,500

APPENDIX 5. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SOLIDS 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

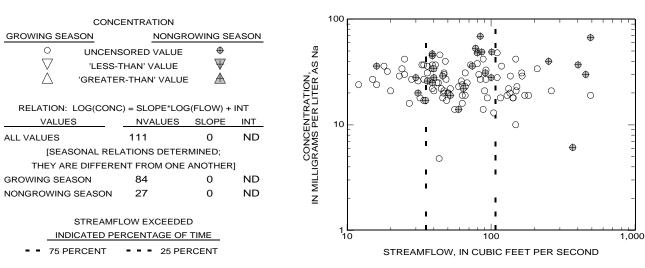
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

$\overset{\times}{\mathbb{V}}$	LOAD UNCENSORED V			>	1,000,000		1 1	1 I I	
 RELATION: LOG(VALUES ALL VALUES	LOAD) = SLOPE*LC NVALUES 84	OG(FLOW) SLOPE 0.99	+ INT INT 3.12	UNDS PER DA	100,000		-		
SMOOTHED RELATION (SHOWN IF THERE A		ALUES)	W	OAD, IN POU	1,000			1 1 1	
	ED PERCENTAGE C			ב	100	1		I I 100	1,000
						STREAM	FLOW, IN CUBIC	FEET PER SEC	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	500				+	
LOW FLOW HIGH FLOW				0	*	
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ★	CONCENTRATION, MILLIGRAMS PER LITER 000	_			Φ.Ο.	0
TRENDS IN CONCENTRATION	S PER SOOF	_	0 ⊕ 0	0 0	⊕ 0 0	_
VALUES NVALUES NWYS SLOPE LOW FLOW 26 13 ND	CENT SRAM 500		0 🛖 00 🍙	•	∞	+
HIGH FLOW 19 12 ND	CON		• • •	0 •	• • •	⊕
	≥ <u>Z</u> 100	-	0	0	⊕	+ + + -
	0		1 1 1 1 1		1 1 1	
	U.	76 77	78 79 80 81 82 8	3 84 85	86 87 88 8	9 90 91 92 93


Appendix 6 Dissolved sodium

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

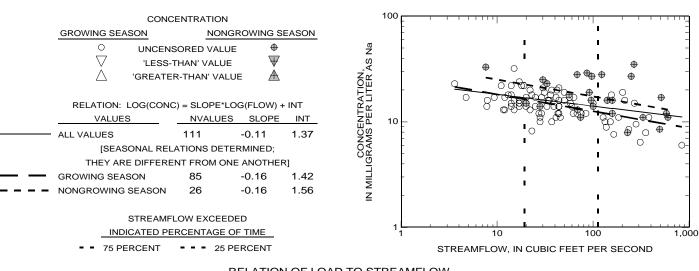
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD			1	,000,000	1 1		''	1 1		<u> </u>
$\stackrel{ imes}{ abla}$	UNCENSORED V			≻	- - - -		1 1	!			-
RELATION: LOG(L VALUES	OAD) = SLOPE*LO NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D	100,000		1	ı		×	
ALL VALUES	111	0.97	2.19	JNDS	- - -				×	X	=
OOTHED RELATIO	N BETWEEN LOAD	AND FLO	w	PO	-		` ×				-
SHOWN IF THERE AR	E 10 OR MORE V	ALUES)		Ď.	10,000	,		XXX	•	×	
STREA	AMFLOW EXCEED	ED		-0A	E	X		× ′•			=
INDICATED	PERCENTAGE C	F TIME		_	-	X	× ^`	ı			-
75 PERCEN	T = = = 25 P	ERCENT				* × ×	ı	I			-
					1,000	1 1	<u> </u>	100	1		1,000
						STREAM	IFLOW, IN C	UBIC FEE	T PER SE	COND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		100	1 1 1 1	1 1 1		1 1 1	' '
LOW FLOW HIGH FLOW	æ						
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ★	ON, ER AS Na	80					_ _
TRENDS IN CONCENTRATION	CONCENTRATION, IGRAMS PER LITER AS	60					_
VALUES NVALUES NWYS SLOPE							⊕
LOW FLOW 22 11 ND	ΣŽ	40	⊕			⊕	<u></u>
HIGH FLOW 26 11 ND	었쏬			⊕	@ +	⊕	000
	Ĭ		⊕	@ o #	Ψ.	Φ	0 0
	N MILL	20			• ·		_
			⊕			0	-
		0	77 78 79 80 8	81 82 83 84	85 86 87	88 89 90	91 92 93


WATER YEAR

100 -

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

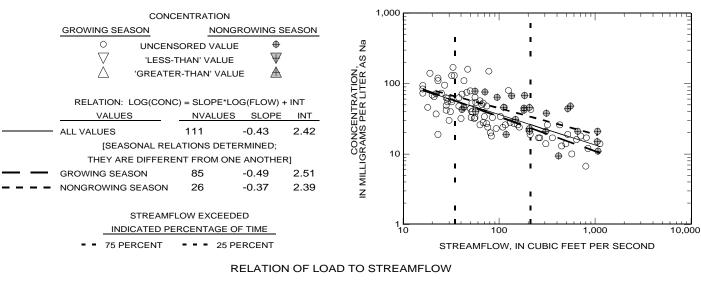
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 111 0.89 2.1	0
 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 	NO 2 1,000 X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	
	100 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		1	
LOW FLOW HIGH FLOW	ď		
○ UNCENSORED VALUE	ž 0 40		
√ 'LESS-THAN' VALUE ₩	, AS		
	ON ER		⊕
	₹⊒ 30	0 0	
TRENDS IN CONCENTRATION	F.E. 20	⊕ ⊕	
VALUES NVALUES NWYS SLOPE	CONCENTRATION, GRAMS PER LITER AS Na O 6 6	1	
LOW FLOW 25 14 ND	Ω <u>Ω</u> 20		0
HIGH FLOW 28 15 0	08 ₂₀		
1101112011 20 10 0	=		0
	∐ ₩ 10 ₩		
	∑ 10		-
	=	Φ Ψ	


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

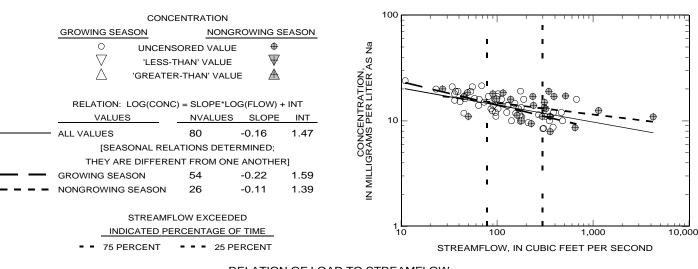
50 **-**

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD	1,000,000
✓ UNCENSORED VALUE ✓ 'LESS-THAN' VALUE ✓	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

_	ONCENTR	ATION			250			- 1	-1	- 1	- 1	-1	- 1	-1	- 1	- 1	- 1	- 1	
,	ONCENTR	ATION																	
LOW FLOW			HIGH FLOW	m															
O UN	CENSOREI	D VALUE	⊕	N N	200	_													
, 'L	ESS-THAN'	VALUE	$\overline{\Psi}$	AS	200														
△ 'GRE	ATER-THA	N' VALU	E A	ATION, LITER A				0											
				£5	150														
TREND	S IN CONC	ENTRAT	ION	ዾዹ	100						_					_			
VALUES	NVALUES	NWYS	SLOPE	E.E.							O	0			(0			
LOW FLOW	26	14	ND	CONCE	100					0									
HIGH FLOW	26	14	0	SA A	100		0			0									
				- 6			O			_			O	0				\circ	
				₩ W	50					0			0	0			0	0	
				2	50		\oplus				0			#)	\circ			

0

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR [NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

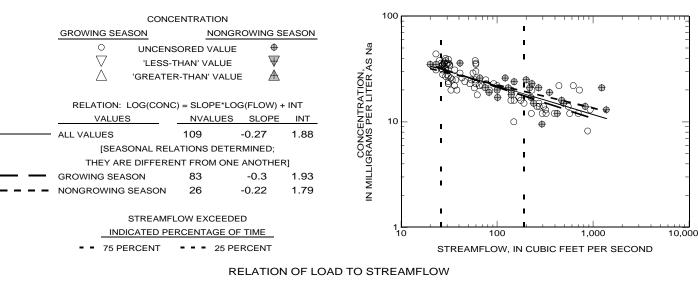
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		1,000,000	- 		<u></u>
× UNCENSORED VALUE		Ė	ı		=
V 'LESS-THAN' VALUE	×	-	ı	I	×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000	Ī	•	//
VALUES NVALUES SLOPE	INT G	100,000	-	i . X	
ALL VALUES 80 0.84	2.2	}	-	· ·××	=
— SMOOTHED RELATION BETWEEN LOAD AND FL	ow J		1 1	××××××××××××××××××××××××××××××××××××××	-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u>z</u>	10,000		* * * ` ·	
STREAMFLOW EXCEEDED	o O	<u> </u>		•	=
INDICATED PERCENTAGE OF TIME		' F		ı	=
75 PERCENT 25 PERCENT			, i	ı	-
		1,000	100	1,000	10,000
			STREAMFLOW,	IN CUBIC FEET PER	R SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		1 ' ' ' ' ' ' ' '			' ' d
LOW FLOW HIGH FLOW	æ				
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ♥ △ 'GREATER-THAN' VALUE ▲	ENTRATION. PER LITER AS Na 51	- O	○ ○ ○ ○ ○ ○ ○ ○ ○	0	00 0
TRENDS IN CONCENTRATION	TRA TRA TRA TRA TRA	.0	•		
VALUES NVALUES NWYS SLOPE	EN C	• •	_	\oplus	Φ,
LOW FLOW 21 11 ND	0¥ 10		⊕		Φ
HIGH FLOW 21 10 ND	CONCE IN MILLIGRAMS 2	⊕ ⊕ ⊕			_


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

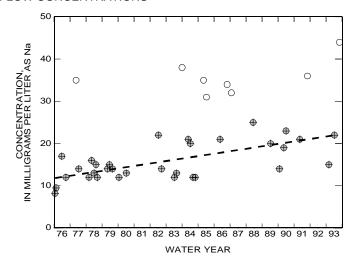
WATER YEAR

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

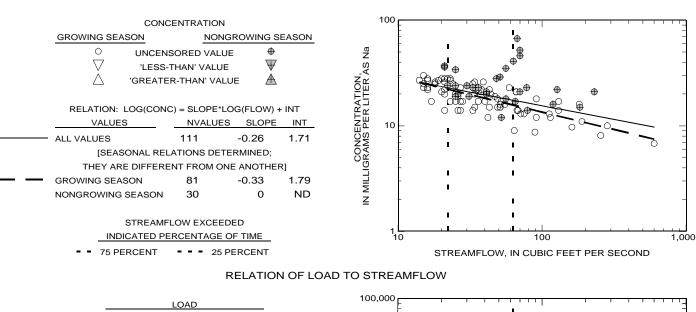
$\overline{\mathbb{V}}$	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE	>	1,000,000	<u> </u>	1 1	
RELATION: LOG(VALUES ALL VALUES	(LOAD) = SLOPE*LOG(FLOW) + NVALUES SLOPE 109 0.73	NT	100,000	1 1	1 × × × × × × × × × × × × × × × × × × ×	- - - - - - - - - - - - - - - - - - -
(SHOWN IF THERE A	ON BETWEEN LOAD AND FLOW RE 10 OR MORE VALUES) EAMFLOW EXCEEDED	LOAD, IN PO	10,000		1	
- 75 PERCE	ED PERCENTAGE OF TIME NT 25 PERCENT		1,000	100	I I 1,000 N CUBIC FEET PER :	10,000


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

HIGH FLOW

○ UNCENSORED VALUE #							
abla 'Less-than' value $ abla$							
△ 'GF	△ 'GREATER-THAN' VALUE 🛧						
TRENDS IN CONCENTRATION							
VALUES NVALUES NWYS SLOP							
LOW FLOW	8	7	ND				
 HIGH FLOW	32	14	0.58				

LOW FLOW


CONCENTRATION

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

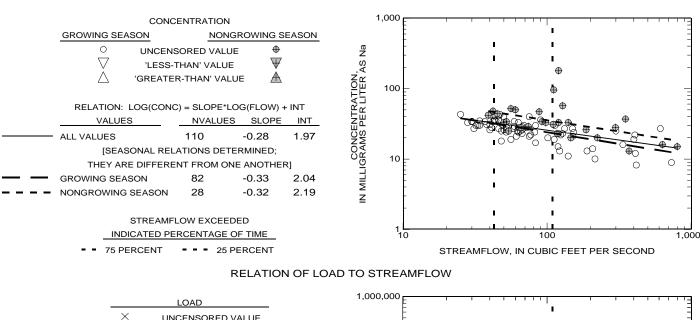
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	X X X X X X X X X X X X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z Q	10,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	1,000 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW	•	
○ UNCENSORED VALUE ♥ ∨ 'LESS-THAN' VALUE ▼	LITER AS Na	_
	은판	⊕
	∑ 50	· -
TRENDS IN CONCENTRATION	F.A.	⊕
VALUES NVALUES NWYS SLOPE	E S	•
LOW FLOW 24 12 ND	CONCENT GRAMS PEI	→
HIGH FLOW 32 16 0	28	0
	⊒ ∑ 20	
	Z	
		¥


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

100

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

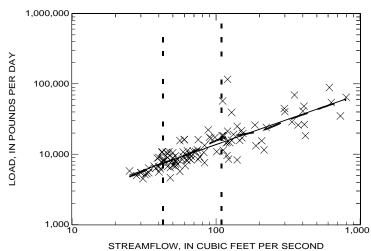
RELATION OF CONCENTRATION TO STREAMFLOW

× UNCENSORED VALUE

VLESS-THAN' VALUE

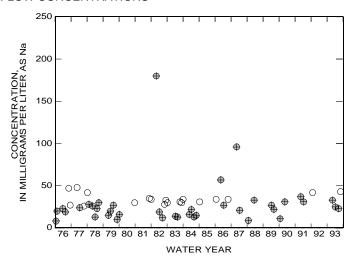
 RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

 VALUES
 NVALUES
 SLOPE
 INT


 ALL VALUES
 110
 0.72
 2.7

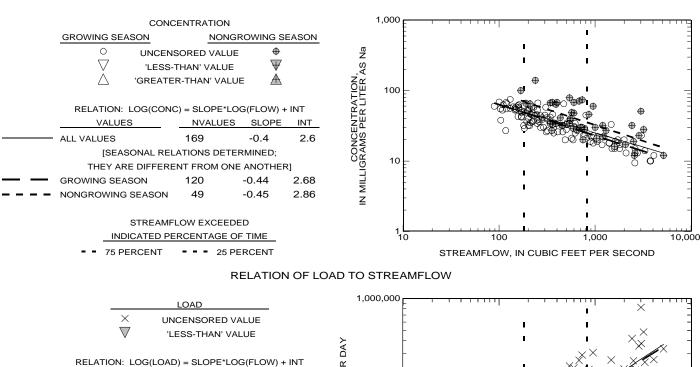
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

CONCENTRATION							
LOW FLOW	1	HIGH FLOW					
0	UNCENSORED VALUE	+					
∇	'LESS-THAN' VALUE	$\overline{\Psi}$					
\triangle	'GREATER-THAN' VALU	E A					
TO	DENIDO IN CONCENTRAT	TON					


TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	19	11	ND				
HIGH FLOW	39	15	0				

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

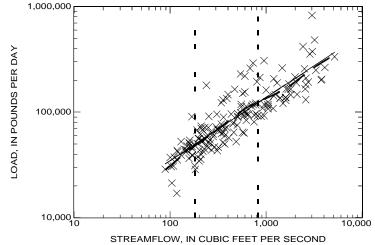
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

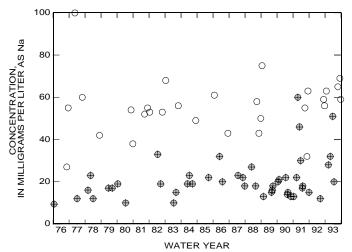
VALUES

ALL VALUES


NVALUES

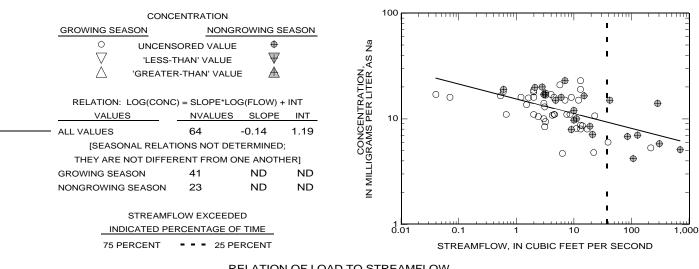
SLOPE

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

CONCENTRATION							
LOW FLOV	<u>v</u>	HIGH FLOW					
0	UNCENSORED VALUE	⊕					
∇	'LESS-THAN' VALUE	$\overline{\Psi}$					
\triangle	'GREATER-THAN' VALUE	■ 🛦					


TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	29	14	0				
HIGH FLOV	/ 47	17	0				

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

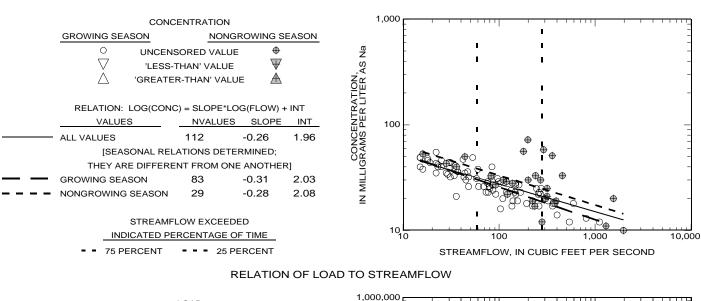
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

×	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE		<u>></u>	100,000					× ×-
RELATION: LO VALUES - ALL VALUES	$ \frac{\text{OG(LOAD)} = \text{SLOPE*LOG(FLOV}}{\text{NVALUES}} \frac{\text{SLOPE}}{64} \\ 0.86 $	•	NDS PER DA	1,000) X	(
	ATION BETWEEN LOAD AND FI E ARE 10 OR MORE VALUES)	LOW	D, IN POU	100			×	1	
	TREAMFLOW EXCEEDED ATED PERCENTAGE OF TIME CENT 25 PERCENT	_	LOA	10	0.1	1	10	100	1,000
					STREAM	IFLOW, IN C	UBIC FEET P	ER SECOND)

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		1 ' '		
LOW FLOW	HIGH FLOW			
O UNCENSORED VALUE	JE \oplus Z $_{0}$ 20	20 —		_
LESS-THAN' VALU	S			
△ 'GREATER-THAN' VAI	TOE W ON THE TOTAL THE TOT			
	<u>∑</u> 1:	5 - +	+	_
TRENDS IN CONCENTR	ATION KA			0
VALUES NVALUES NWY	S SLOPE U			
LOW FLOW 0 0	CONCI CONCI MILLIGRAMS	0 –		_
HIGH FLOW 9 5	ND QĶ			
	Ä	•	⊕	
	Ĭ ,	5	→ → → → → → → → → → → → → → → → → → →	=
	Z	₩		

0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

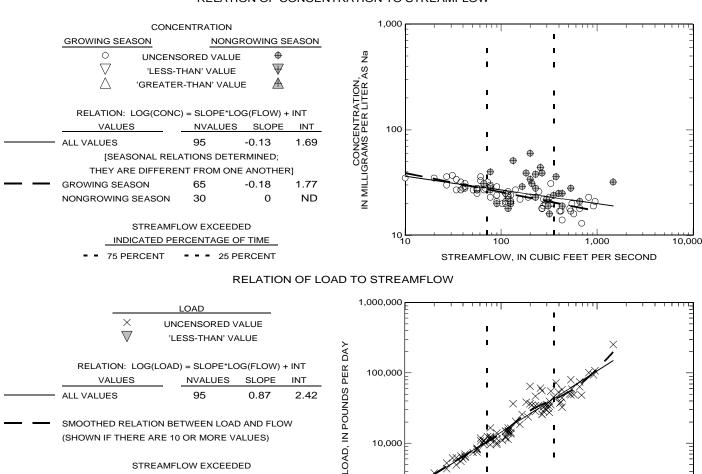
RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	0
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	Q 10,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	1,000 10 100 1,000 10,000 STREAMELOW IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

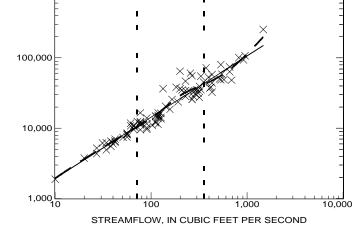
CONCENTRATION		100		1 1	'	1 1	1 1	- 1	1 1	1 1	'	1	
LOW FLOW HIGH FLOW	m												
○ UNCENSORED VALUE	N Sa	80	_										
abla 'Less-than' value $ abla$, AS												
	N HO												
	RATION, R LITER	60	_						Φ.				
TRENDS IN CONCENTRATION	E H					0			⊕	0			
VALUES NVALUES NWYS SLOPE	S PE					Õ	_	∞		8	_		\cap
LOW FLOW 39 16 0	AMS	40	- 0	. 0	0	a Er	0		00		O		_
HIGH FLOW 19 12 ND	28		0.5	3 -	0	,	0 6		00	,	⊕	+	
	Ξ)	- 0		0 0		-	+	
	Ĭ	20	_⊕0	_ €	_	,	⊕	⊕	⊕		⊕	Ψ	
	Z		0		•		•	Ψ	Ψ		Ψ	⊕	
				₩	-		Ψ					Ψ	

100 -

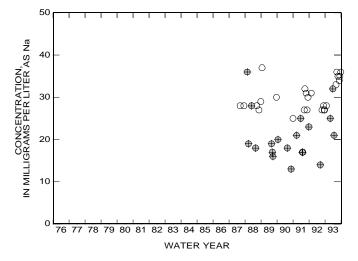

0

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

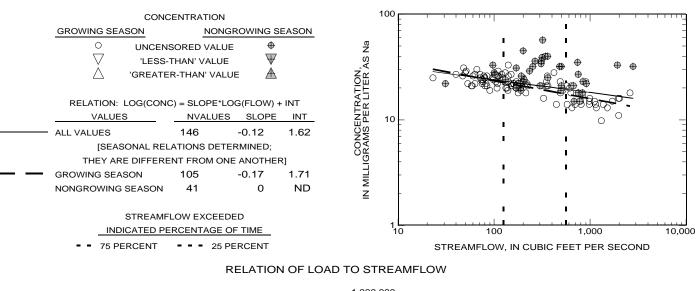

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



(SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT


CONCENTRATION										
LOW FLOW			HIGH FLOW							
Ο υ	NCENSORE	D VALUE	⊕							
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$							
△ 'GREATER-THAN' VALUE 🛣										
∴ 'GREATER-THAN' VALUE TRENDS IN CONCENTRATION										
TREN	IDS IN CONC	ENTRATI	ON							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	25	7	ND							
HIGH FLOW	19	6	ND							

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

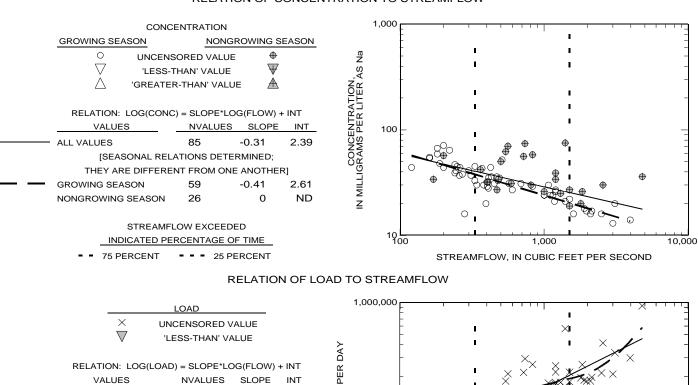
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD		1,000,000		· · · · · · · · · · · · · · · · · · ·	
$\stackrel{ imes}{ abla}$	UNCENSORED VALUE 'LESS-THAN' VALUE		_	1	i	××
VALUES	LOAD) = SLOPE*LOG(FLOW) NVALUES SLOPE	INT 0		1		
	146 0.88 ON BETWEEN LOAD AND FLO RE 10 OR MORE VALUES)	2	10,000			-
	EAMFLOW EXCEEDED ED PERCENTAGE OF TIME NT 25 PERCENT	0	10,000			
			1,000	100	1,000 N CUBIC FEET PER	· ·

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW	σ.	
○ UNCENSORED VALUE ✓ 'LESS-THAN' VALUE ✓ 'GREATER-THAN' VALUE Æ	CONCENTRATION, SRAMS PER LITER AS Na 0 0 0 0	• • • • •
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	ENTR	
LOW FLOW 45 13 ND HIGH FLOW 36 13 ND	CONC IN MILLIGRAMS	

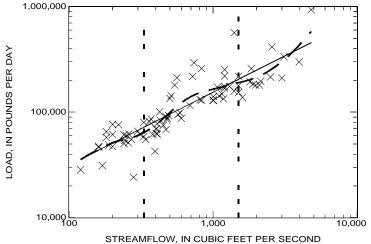

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

50 **-**

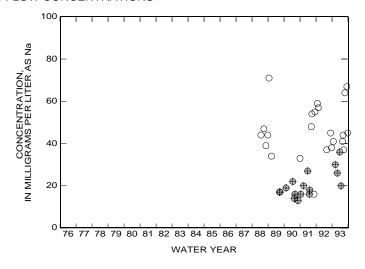
[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



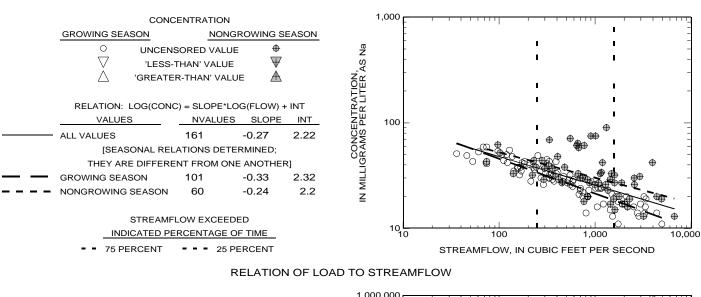
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

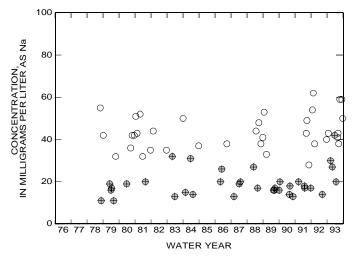

ALL VALUES

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

	CONCENTRATION	
LOW FLOW	1	HIGH FLOW
0 \	UNCENSORED VALUE	+
\ \ \	'LESS-THAN' VALUE	- ₩
\triangle	'GREATER-THAN' VALU	E /II

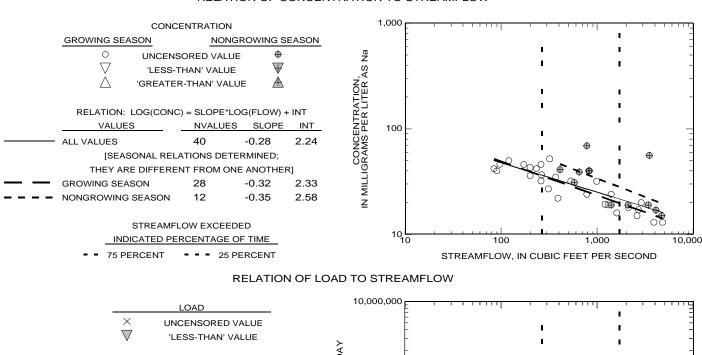

11	TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE							
LOW FLO	w 22	6	ND							
HIGH FLO	w 16	4	ND							

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000		×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000		
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	10,000 - 10,		
75 PERCENT 25 PERCENT	1,000	I I I I I I I I I I I I I I I I I I I	0,000


	CONCENTR	ATION					
LOW FLOW		HIGH FLOW					
Ο υ	NCENSORE	D VALUE	+				
∇	LESS-THAN'	VALUE	$\overline{\Psi}$				
△ 'GF	≣ ▲						
TREN	IDS IN CONC	ENTRAT	ION				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	36	13	0				
HIGH FLOW	36	14	0				

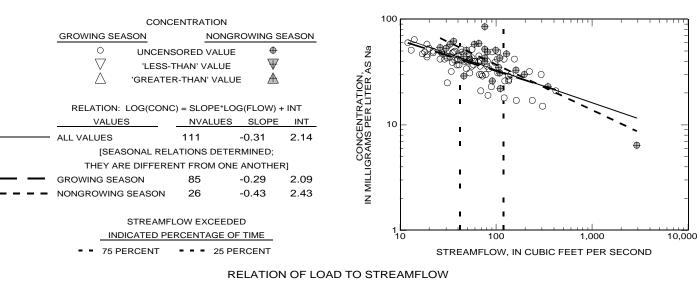
APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

×	LOAD UNCENSORED V. 'LESS-THAN' VA				10,000,000			1 1	
RELATION: LOG(VALUES ALL VALUES	(LOAD) = SLOPE*LO NVALUES 40	G(FLOW) SLOPE 0.72	+ INT INT 2.98	IDS PER DAY	1,000,000		1	I × I	- - - - - - - - - - - - - - - - - - -
SMOOTHED RELATION (SHOWN IF THERE A		ALUES)	w	OAD, IN POUN	100,000		1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		* -
75 PERCE	ED PERCENTAGE O NT 25 PI	F TIME ERCENT		_	10,000	100	1,00	I I 0	10,000
						STREAMELOW	IN CUBIC FEET PE	R SECOND	,

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


					100														
	CONCENTR	ATION			100	- 1	1	1	ı	ı	1	1	ı	-	ı	1	ı	ı	ı
LOW FLOW			HIGH FLOW	ď															
Ο υ	NCENSORE	VALUE	⊕	Z a	80	_													
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$, A	00														
△ 'GF	REATER-THA	N' VALUE	■ ▲	ER O															
				FRATION,	60	_													
TREN	IDS IN CONC	ENTRAT	ION	FR															
VALUES	NVALUES	NWYS	SLOPE	CONCENT IGRAMS PEF								0							
LOW FLOW	11	8	ND	N N N N N N N N N N N N N N N N N N N	40	_	0					_				0			
HIGH FLOW	11	7	ND	38.6				00										0	
				7				0											
				M	20	- ,	э ф	•					⊕				\oplus		4
				Z			⊕ ♥	•)				Ψ						€

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

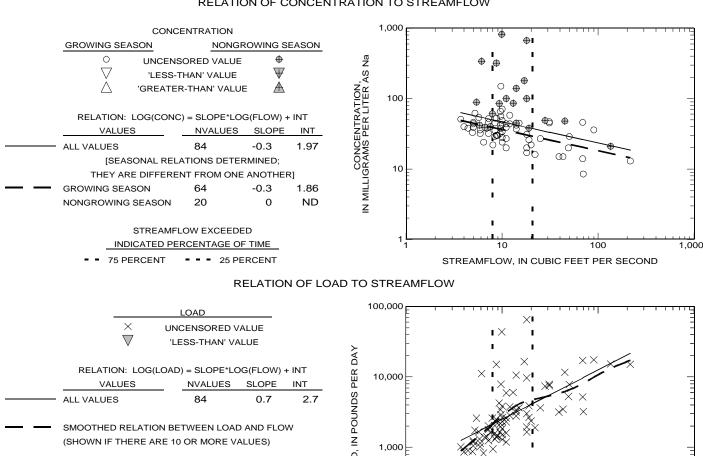
RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				1,000,000	1 1 1 1			1 1 1	11119
×	UNCENSORED V	ALUE			F					=
∇	'LESS-THAN' VA	LUE		>_	F	i	i			-
RELATION: LOG(LOAD) = SLOPE*LC	G(FLOW)	+ INT	R DA		Ī	<u>-</u>			-
VALUES	NVALUES	SLOPE	INT	PER	100,000	,			. —	=
ALL VALUES	111	0.69	2.87	NDS	Ē	•	· · · · · · · · · · · · · · · · · · ·			=
SMOOTHED RELATIO	ON BETWEEN LOAD	AND FLC)W	٥Oul	-	1		××		1
(SHOWN IF THERE A	RE 10 OR MORE VA	ALUES)		Ž	10,000		XXXX			=
STRE	EAMFLOW EXCEED	ED		OAD	E F.×		`*^` 1			1
INDICATE	D PERCENTAGE O	FTIME		_	[* *	^	Ī			7
- 75 PERCE	NT = = 25 P	ERCENT			-					-
					1,000		100	1,000		10,000
						STREAM	MELOW IN C	UBIC FEET PER	SECOND	

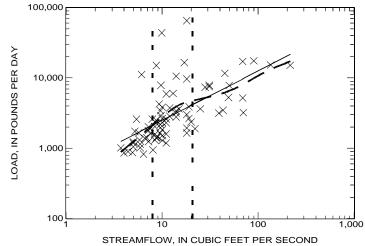
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION

100

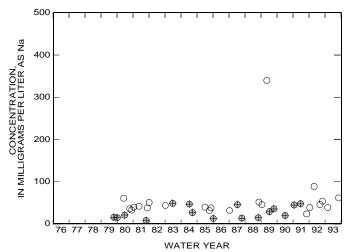

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

LOW FLOW			HIGH FLOW	a		
O U	NCENSORE	VALUE	⊕	S Na	80	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$, Š		
△ 'GF	REATER-THA	N' VALUE	■ ▲	ER		
				RATION, R LITER AS	60	
TREN	DS IN CONC	ENTRATI	ON	XX.	00	
VALUES	NVALUES	NWYS	SLOPE	S PE		
LOW FLOW	35	15	0	CONCI	40	
 HIGH FLOW	19	12	1.23	28		
				M	20	
				_ Z	•	←


APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

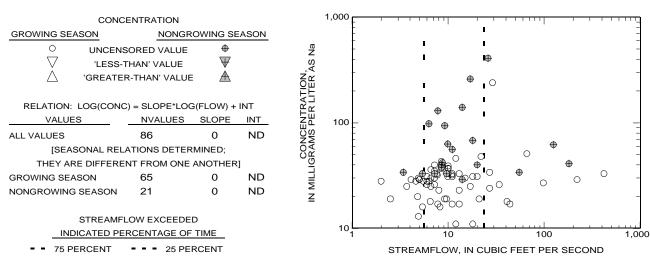
[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle	'GREATER-THAN' VALU	E A
TD	ENDO IN CONCENTRAT	TON!


TREINDS IN CONCENTRATION								
VALUES	NVALUES	NWYS	SLOPE					
LOW FLOW	22	10	ND					
HIGH FLOW	16	11	ND					

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

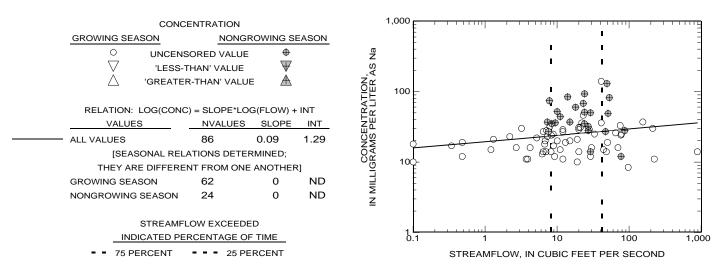
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	0 100,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	OV 1,000
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	100 1 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	300	
LOW FLOW HIGH FLO	<u>w</u>	
O UNCENSORED VALUE #	e V V V V V V V V V V V V V V V V V V V	_ -
'LESS-THAN' VALUE	.∢ Zγ	
△ 'GREATER-THAN' VALUE ⚠		
TRENDS IN CONCENTRATION	CONCENTRATION GRAMS PER LITER 000000000000000000000000000000000000	-
VALUES NVALUES NWYS SLOPE	E'H	
-	AS (S	+
LOW FLOW 14 9 ND	0 ₹ 200 ·	
HIGH FLOW 14 11 ND	ე <u>ც</u>	
	TI 100-	
		-
	Z	⊕ ⊕
	01	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

500 -

APPENDIX 6. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED SODIUM 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

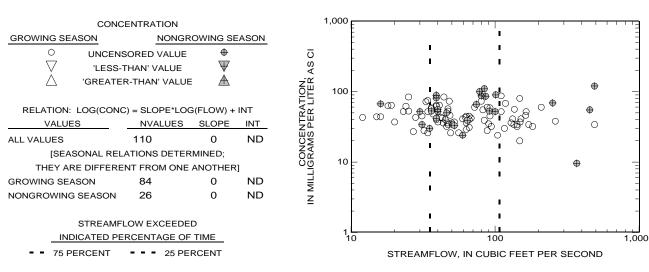
RELATION OF LOAD TO STREAMFLOW

_		LOAD				1,000,000	 	- 	 <u>-</u> 	· · · · · · · · · · · · · · · · · · ·
		CENSORED \				100 000		ı	1	
	V 'LE	SS-THAN' V	ALUE		DAY	100,000		I	I ××	1
RELATIC	N: LOG(LOAD) = SLOPE*LO	OG(FLOW)	+ INT	IR D	10,000		ı		\times
VAL	UES	NVALUES	SLOPE	INT	H.	. 3,333				
ALL VALUES	6	86	1.09	2.02	DS	F			× î	=
					Ž	1,000			*	=
- SMOOTHED	RELATION BE	TWEEN LOAI	D AND FLO	W	ВО	E			ı	=
(SHOWN IF	THERE ARE 10	OR MORE V	ALUES)		Z	100		/ ^	1	
	STREAMFL	OW EXCEED	DED		OAD	Ē		I	Ī	=
!	INDICATED PE	RCENTAGE (OF TIME		_	10		•		=
 75	5 PERCENT	25 F	PERCENT			*		Ī	· ·	3
						0.1	1	10	100	1,000
							STREAMI	FLOW, IN CUBIC	FEET PER SE	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		250	
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE ⊕ ▽ 'LESS-THAN' VALUE ₩ △ 'GREATER-THAN' VALUE ★	CONCENTRATION, MILLIGRAMS PER LITER AS Na	200 -	_
TREMPO IN COMPENTE ATION	RAT	150	-
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	PEI		+
LOW FLOW 27 13 ND	ONC AM8	100 -	_
HIGH FLOW 19 12 ND	25.5		Φ
	1	50	-
	<u>Z</u>	0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR


Appendix 7 Dissolved chloride

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

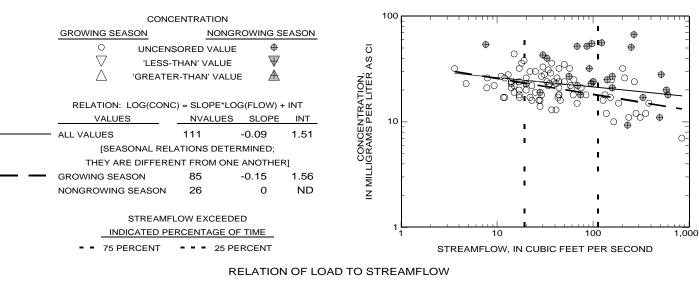
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		1,0	000,000	- 			
	DRED VALUE HAN' VALUE	>		1	1 1	×	
RELATION: LOG(LOAD) = SLO VALUES NVAI	OPE*LOG(FLOW) + INT	PER D	100,000	1		×	=
ALL VALUES 110	0.95 2.4	la SONO	<u>-</u>	·			=
— SMOOTHED RELATION BETWEEN	N LOAD AND FLOW	<u>P</u>	-			×	-
(SHOWN IF THERE ARE 10 OR M	ORE VALUES)	N. D.	10,000		× × × · · · · · · · · · · · · · · · · ·		
STREAMFLOW E. INDICATED PERCENT		γο/	E ×	××××			=
75 PERCENT	25 PERCENT		- 1	1	1		-
			1,000 10		100		1,000
				STREAMFLOW, IN	N CUBIC FEET PE	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		250	
LOW FLOW	HIGH FLOW		
O UNCENSORED VALUE			
	₩ ₹ **		
TRENDS IN CONCENTRATION	NO R.P.	150	-
	DIA DE PROPER DIA DEPAR DIA DE PROPER DIA DE PROPER DIA DEPAR DIA		+
LOW FLOW 22 11	ND ZŽ	100	
HIGH FLOW 25 11	ND SR		• •
	∑ Z	50	
	_	'	* • • • • • • • • • • • • • • • • • • •
		0	<u> </u>
		ŭ	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

250 -

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

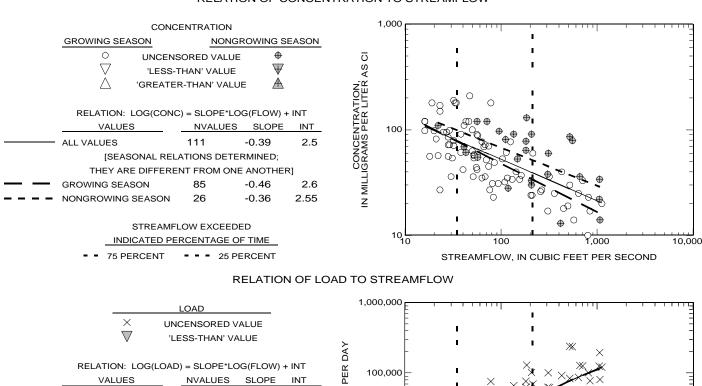
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

$\dfrac{\text{LOAD}}{ imes}$ UNCENSORED VALUE "LESS-THAN" VALUE	>	100,000		I k	× × ×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT		10,000	×		
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	LOAD, IN	1,000	**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1	10 STREAMFLOW, II	100 N CUBIC FEET PER	1,000 R SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		.00		1
LOW FLOW	GH FLOW			
○ UNCENSORED VALUE VESS-THAN' VALUE VERATER-THAN' VALUE	ER AS C	80	D — — — — — — — — — — — — — — — — — — —	-
TRENDS IN CONCENTRATION	TTRATION,	60	1	_
	SLOPE HIS		0	
LOW FLOW 25 14	ND ŠŠ	40	o -	+
HIGH FLOW 28 15	0 08			
	O O ONGENITA	0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	3

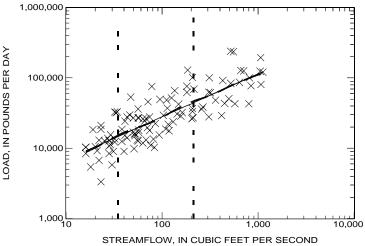

WATER YEAR

100 -

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

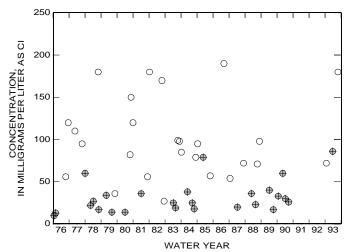
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

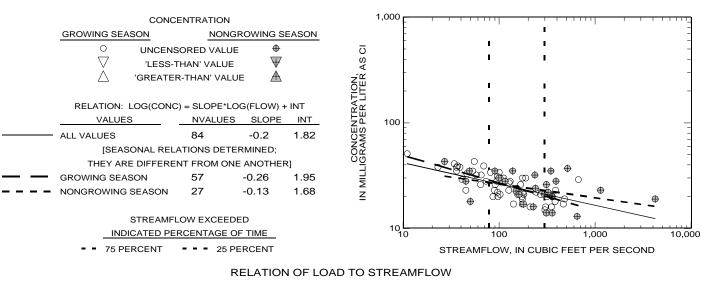
ALL VALUES

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

CONCENTRATION								
LOW FLOW		HIGH FLOW						
	UNCENSORED VALUE 'LESS-THAN' VALUE	₩						
Δ,	GREATER-THAN' VALUE							


TRENDS IN CONCENTRATION								
VALUES	NVALUES	NWYS	SLOPE					
LOW FLOW	26	14	ND					
HIGH FLOW	26	14	0					

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

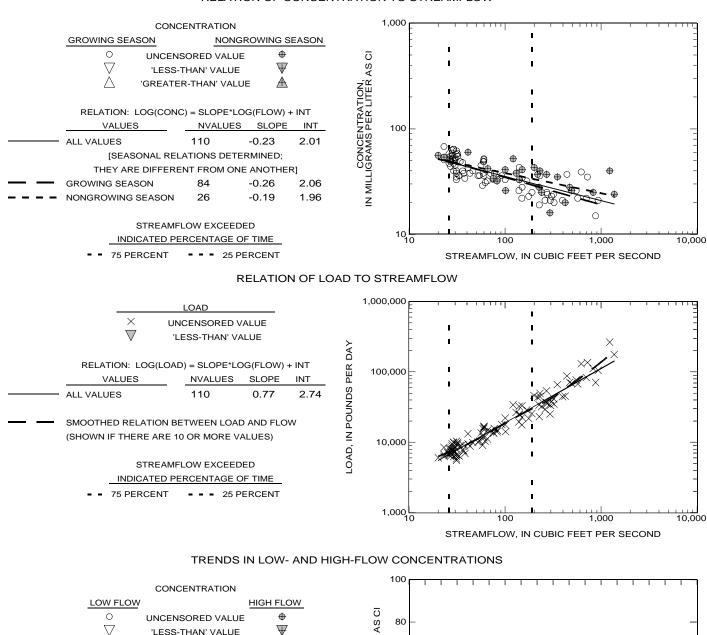
RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE		1,000,000		1 1	×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE ALL VALUES 84 0.8	INT	100,000 M 100,000	1		
SMOOTHED RELATION BETWEEN LOAD AND FI (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	LOW	10,000 to 0		, ,	
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	_ r	1,000	100	1 1 1,000	10,000
			STREAMELOW	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION				'		'	'			'				' '	
LOW FLOW HIGH FLOW	_														
\bigcirc UNCENSORED VALUE $\stackrel{\oplus}{ extstyle iggle}$ 'LESS-THAN' VALUE $\stackrel{\triangle}{ extstyle iggle}$ 'GREATER-THAN' VALUE $\stackrel{\triangle}{ extstyle iggle}$	ON, TER AS CI	0 –													-
TRENDS IN CONCENTRATION	RATI ER LI	0 –													_
VALUES NVALUES NWYS SLOPE	F.S.														С
LOW FLOW 21 11 ND	CONCE GRAMS 4	0 –						6			0		Ç	þ	0
HIGH FLOW 22 10 ND	00 80		O	0	0			6	ୃ	0					_
	⊒		00	0_) 1			4	-				Ф	⊕
		0		₽	ф Ф	, O (b)			⊕					Φ,	∌ –
	_	₩,	•		Ψ										

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

100 -

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

Δ

VALUES

LOW FLOW

HIGH FLOW

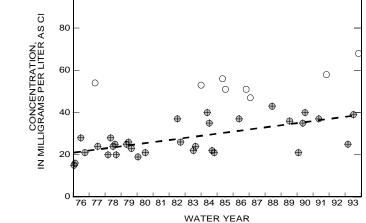
'GREATER-THAN' VALUE

TRENDS IN CONCENTRATION

8

32

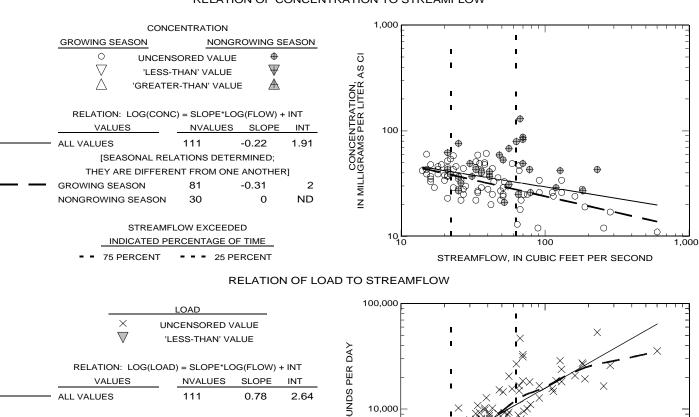
NVALUES NWYS


7

14

 \mathbb{A}

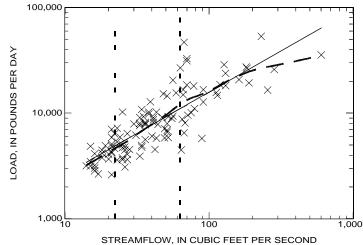
ND


SI OPE

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

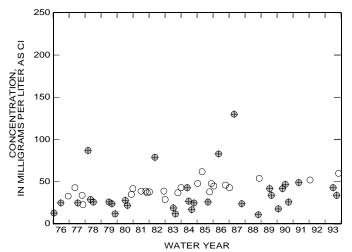
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



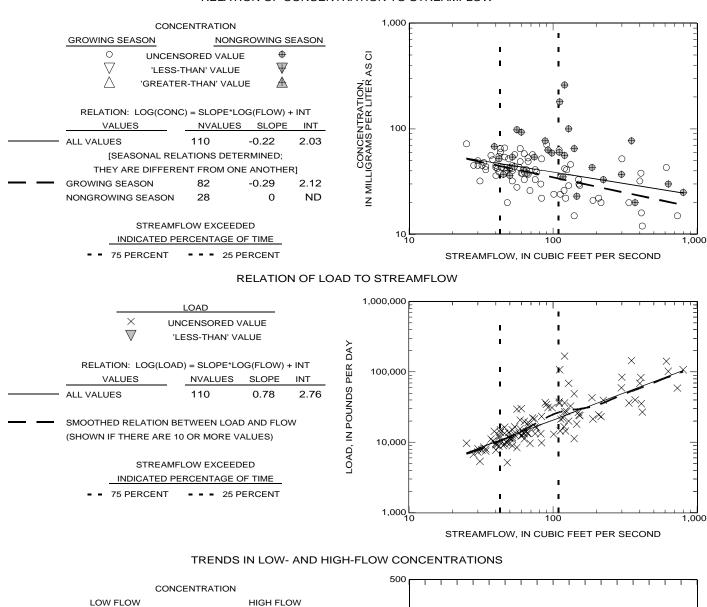
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

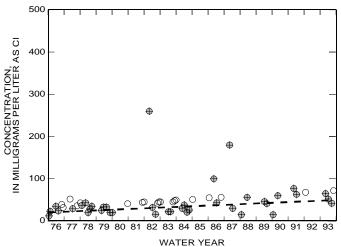
75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOW	<u> </u>	HIGH FLOW
○	UNCENSORED VALUE 'LESS-THAN' VALUE GREATER-THAN' VALUE	⊕ ₩ Æ
TRI	ENDS IN CONCENTRATION	ON


TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE						
LOW FLOW	24	12	ND						
HIGH FLOW	32	16	0						

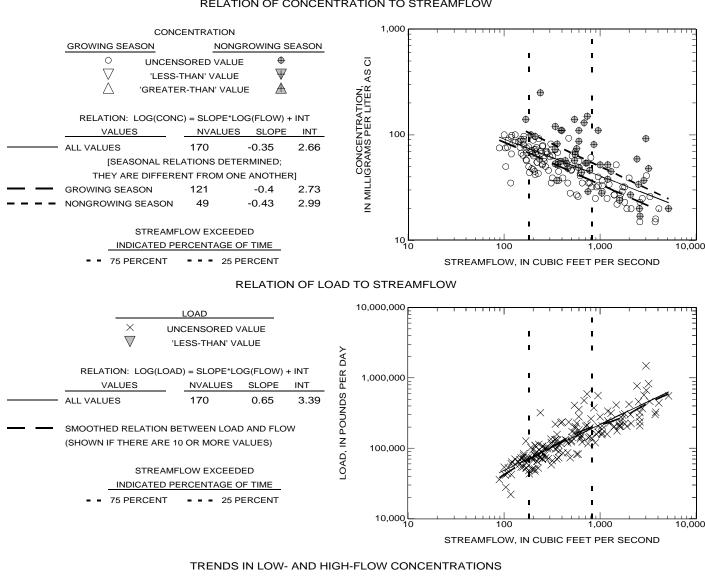
APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

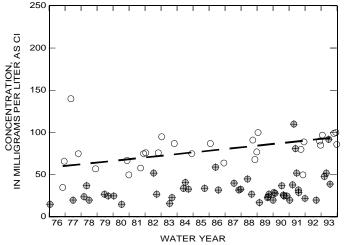

RELATION OF CONCENTRATION TO STREAMFLOW

Ň	LESS-THAN ⁷ REATER-THA		
TREN VALUES	IDS IN CONC	ENTRATI	ION SLOPE
LOW FLOW	19	11	ND
 HIGH FLOW	39	15	1.64

UNCENSORED VALUE

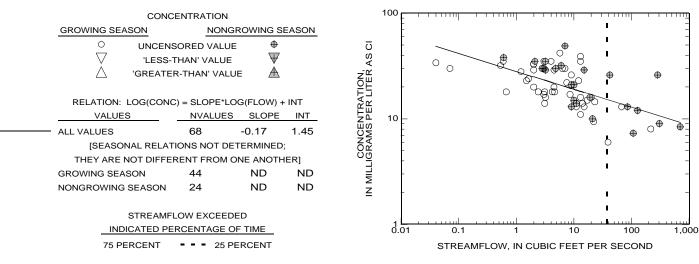

0

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

_	LOW FLOW			HIGH FLOW
	O и	NCENSORE	D VALUE	⊕
	\triangle ,	LESS-THAN'	VALUE	$\overline{\Psi}$
	△ 'GF	REATER-THA	N' VALUE	A
	TREN	DS IN CONC	ENTRATI	ON
	VALUES	NVALUES	NWYS	SLOPE
	LOW FLOW	29	14	2
	HIGH FLOW	48	17	0


CONCENTRATION

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

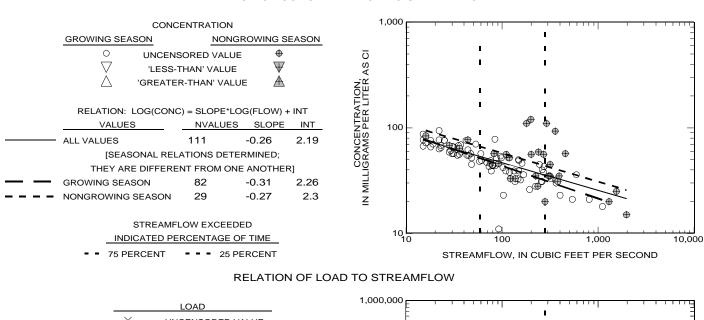
RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 68 0.83 2.19	ND N	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	0 100 F	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	0.01 0.1 1 10 100 1.0	
	STREAMELOW IN CUBIC FEET PER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			1
LOW FLOW	HIGH FLOW		
○ UNCENSORED VALUE VESS-THAN' VALUE GREATER-THAN' VALUE	⊕ 00 40 ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	0 –	_
TRENDS IN CONCENTRAT VALUES NVALUES NWYS	ON O		_ ⊕
LOW FLOW 0 0 HIGH FLOW 10 5	ND 20 ND ND ND 10	⊕ ●	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

50 **-**

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

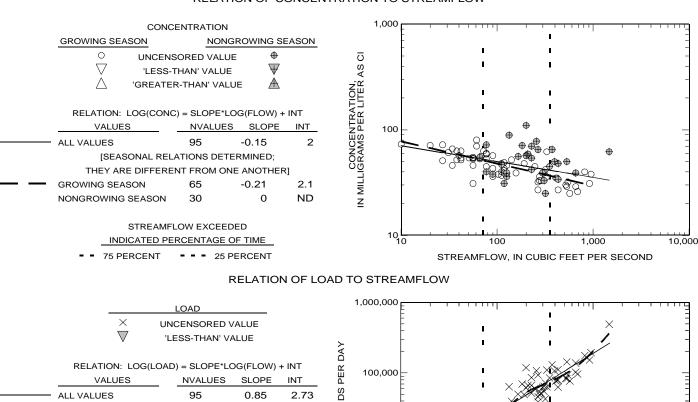
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				1,000,000		11111	•	1 1	
$\stackrel{ imes}{ abla}$	UNCENSORED V			Α	-		1 1	I I	*	- - -
RELATION: LOG	(LOAD) = SLOPE*LO	OG(FLOW)	+ INT	R D	100,000		ī	\times \times \times	×	
VALUES	NVALUES	SLOPE	INT	PE	100,000				`	3
ALL VALUES	111	0.74	2.92	NDS	E F		- - × * *			=
- SMOOTHED RELATI	ON BETWEEN LOAI	O AND FLC)W	POU	-	*		X `X		-
(SHOWN IF THERE A	ARE 10 OR MORE V	ALUES)		Ξ	10,000		X	Ī		=
STR	EAMFLOW EXCEED	ED		OAE	E		' ×	I		=
INDICAT	ED PERCENTAGE C	OF TIME		_				1		_
75 PERCE	NT 25 P	ERCENT			-		1	ı		-
					1,000		100	1,00	00	10,00
						STREA	MFLOW, II	N CUBIC FEET PE	ER SECOND)

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTR	ATION		250		1 1	ı	1 1	ı	1 1	1 1	ı		
LOW FLOW	HIGH F												
O UNCENSORE) VALUE	——————————————————————————————————————	200	L									
C 'LESS-THAN'	VALUE 5	₩ <	200										
△ 'GREATER-THA	N' VALUE	LTER,											
		Ě5	150										
TRENDS IN CONC	ENTRATION	F.R.											
VALUES NVALUES	NWYS SLOP	DO OID OOD OO OID OID								_			
LOW FLOW 39	16	0 0	100	_						⊕		_	
HIGH FLOW 19	12 N	ID OS				_	0				()	
		Ë			o 0	8	000	0	∞	0 0	3 6	3 0	
		IN WILL	50	F &	O	(06	Ø 0	00,		-	Φ _
		Z		⊕ ⊕	э ф (⊕ `	, 0	\oplus	\oplus	4		⊕	-

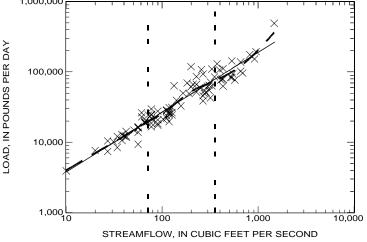

 \circ

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



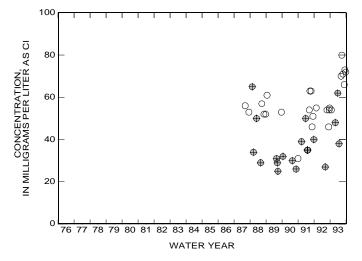
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

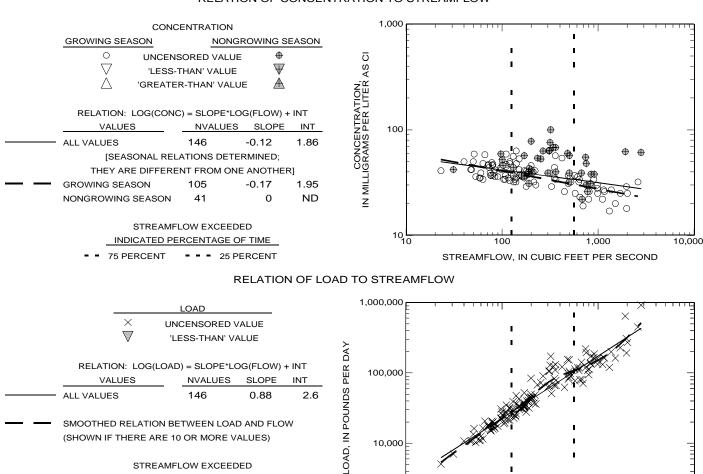
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION				
LOW FLOW			HIGH FLOW	
O U	NCENSORE	D VALUE	⊕	
	'LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GI	REATER-THA	N' VALUE	■ ▲	
TREN	IDS IN CONC	ENTRATI	ON	
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	25	7	ND	

6

ND

19


HIGH FLOW

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

10,000

1,000 L

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	+
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
△ , ′	GREATER-THA	N' VALUE	■ ▲
TRE	NDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

13

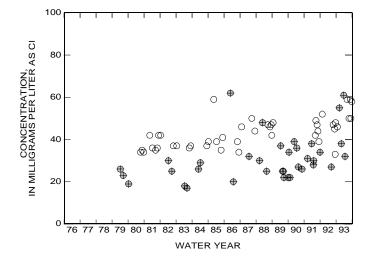
13

ND

ND

45

36

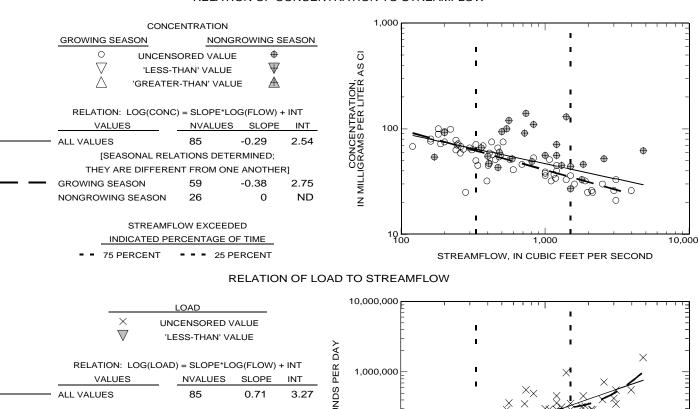

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME

75 PERCENT

LOW FLOW

HIGH FLOW

25 PERCENT

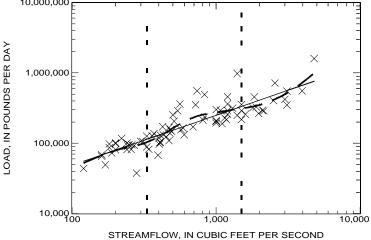

STREAMFLOW, IN CUBIC FEET PER SECOND

10,000

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

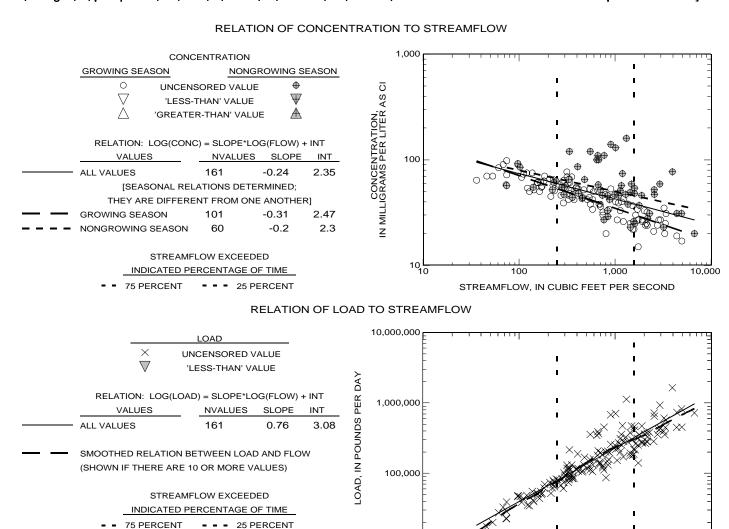


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

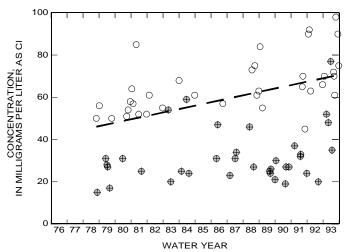


CONCENTRATION				
LOW FLOW			HIGH FLOW	
Ο υ	NCENSORE	D VALUE	⊕	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GF	REATER-THA	N' VALUE	A	
TRENDS IN CONCENTRATION				
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	22	6	ND	
HIGH FLOW	17	4	ND	

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

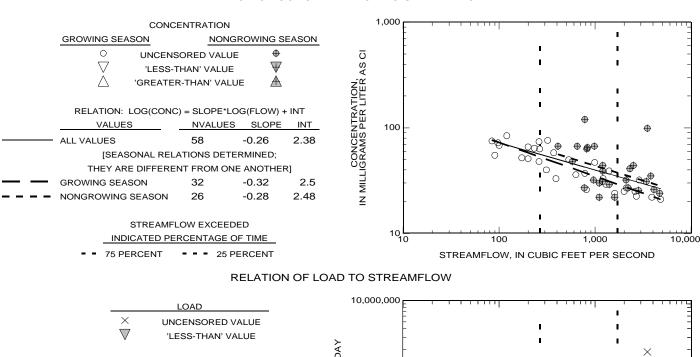

LUCLIELOW

10,000 L

_	LOW FLOW			HIGH FLOW
	Ο υ	NCENSORE	D VALUE	+
	\triangle ,	LESS-THAN'	VALUE	$\overline{\Psi}$
	△ 'GF	REATER-THA	N' VALUE	■ 🛦
	TREN	DS IN CONC	ENTRAT	ION
	VALUES	NVALUES	NWYS	SLOPE
	LOW FLOW	36	13	1.62
	HIGH FLOW	36	14	0

LOW/FLOW

CONCENTRATION


STREAMFLOW, IN CUBIC FEET PER SECOND

10,000

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

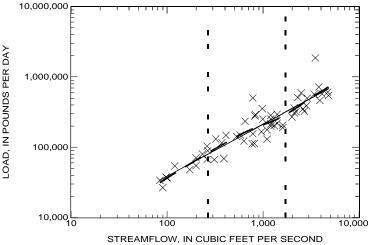
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

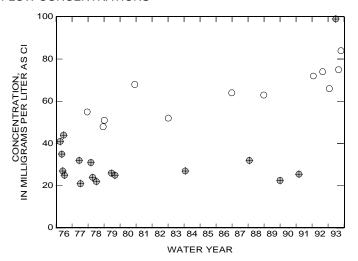
ALL VALUES

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT


NVALUES

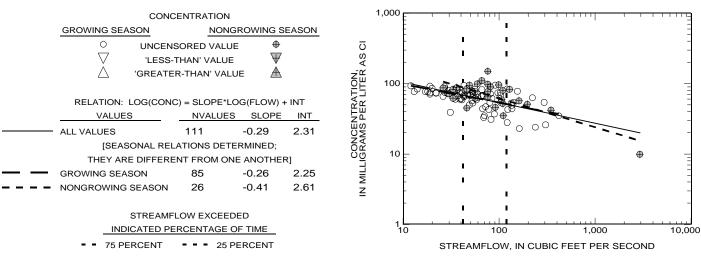
SLOPE

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

	CONCENTRATION	
LOW FLOV	v <u>ні</u>	GH FLOW
0	UNCENSORED VALUE	Φ
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle	'GREATER-THAN' VALUE	\triangle
т.	DENIDS IN CONCENTRATION	NI.


TRENDS IN CONCENTRATION			
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	12	9	ND
HIGH FLOW	17	9	ND

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

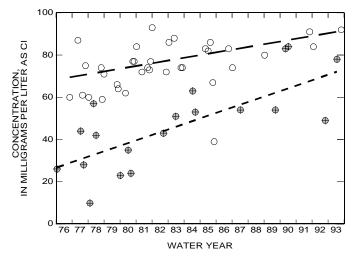
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	1,000,000
× uncensored value ▼ 'LESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 111 0.71 3.04	100,000 - 1 1 × 1× × ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	1,000 1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

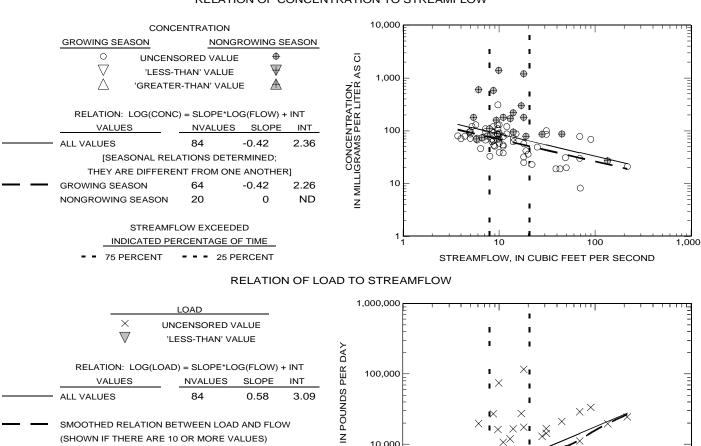
HIGH FLOW


^	LESS-THAN' REATER-THA		₩ ★
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
 LOW FLOW	35	15	1.29
 HIGH FLOW	19	12	2.59

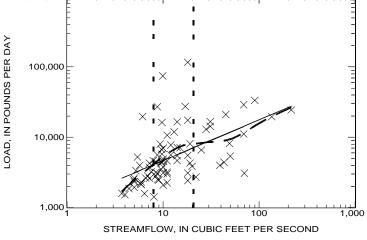
LOW FLOW

0

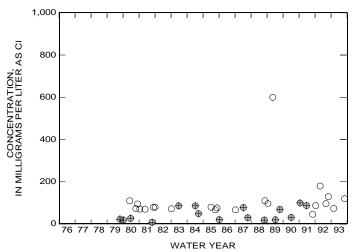
CONCENTRATION


UNCENSORED VALUE

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

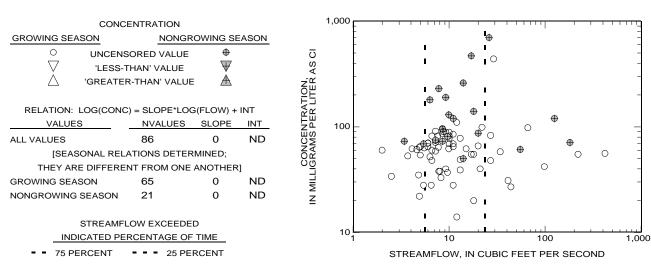

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME

75 PERCENT 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
	GREATER-THAN' VALUE	<u> </u>
TRI	ENDS IN CONCENTRATI	ON


VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	22	10	ND
HIGH FLOW	16	11	ND

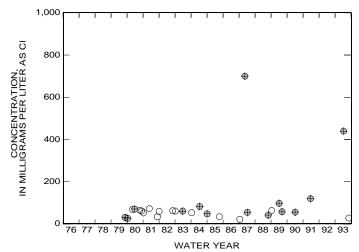
APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

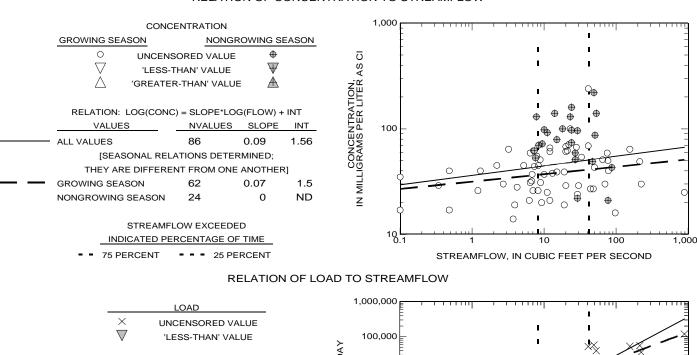
LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000	· · · · · · · · · · · · · · · · · · ·
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	1,000	
	100	10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

HIGH FLOW

, ,	UNCENSORED VALUE 'LESS-THAN' VALUE 'GREATER-THAN' VALUE			
TRENDS IN CONCENTRATION				
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	14	9	ND	
HIGH FLOW	14	11	ND	

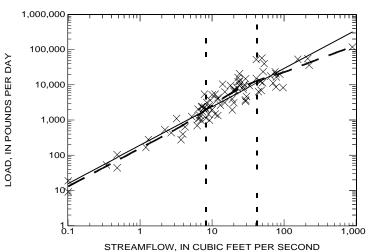
CONCENTRATION


LOW FLOW

APPENDIX 7. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED CHLORIDE 01395000 RAHWAY RIVER AT RAHWAY, N.J.

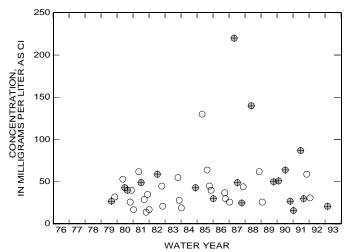
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

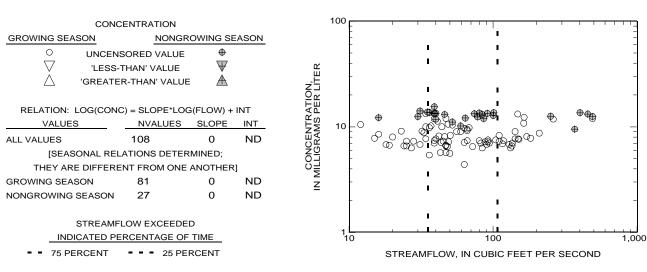
STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

CONCENTRATION						
LOW FLOW	•	HIGH FLOW				
0	UNCENSORED VALUE	⊕				
∇	'LESS-THAN' VALUE	$\overline{\Psi}$				
\triangle	'GREATER-THAN' VALUI	≜				

TRENDS IN CONCENTRATION					
	VALUES	NVALUES	NWYS	SLOPE	
	LOW FLOW	27	13	ND	
	HIGH FLOW	19	12	ND	


Appendix 8 Dissolved oxygen

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

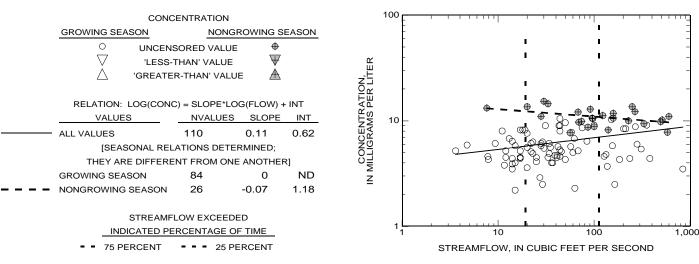
RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000 H H H H H H H H H H H H H H H H H
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000 × 1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	100 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			1 ' '					' '
LOW FLOW	HIGH FLOW							
○ UNCENSORED VALUE □ 'LESS-THAN' VALUE □ 'GREATER-THAN' VALUE	:	20 LITER 20						_
TRENDS IN CONCENTRAT	TION A	MILLIGRAMS PER LITER 10	-	○ _○	* •	0	•	- ○ •
LOW FLOW 22 11	ND S) (5 10		0		+		0 -
HIGH FLOW 25 11	ND É	WILLIAM N	⊕ ⊕ -	• • •			+	0 0 =

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

25 -

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

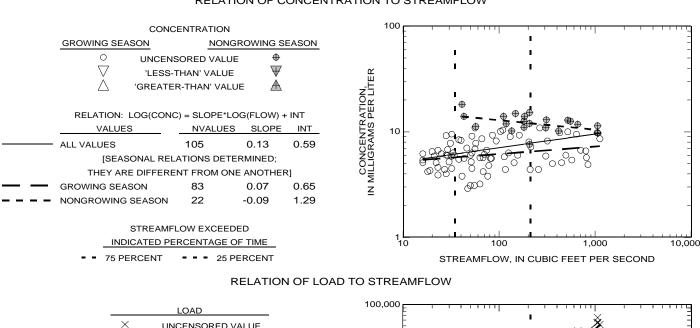
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 110 1.11 1.35 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000 PER DO 10,000 PER DO 10,
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		25		1				- 1	- 1	1	\neg		1					
LOW FLOW HIGH FLOW																		
O UNCENSORED VALUE	ATION, PER LITER	20																-
TRENDS IN CONCENTRATION		15	F	_								⊕						-
VALUES NVALUES NWYS SLOPE	AMS			0		Φ.						Ψ	4	A		0	,	\oplus
LOW FLOW 25 14 ND	SS.	10	D		\oplus	₩	⊕	Φ.			\oplus		4		₽			_
HIGH FLOW 28 15 0	Ęġ				⊕			Ψ (#	⊕			O	∌	0€	∌ ∉	₽	0
	CONCENTE IN MILLIGRAMS	5 ⁽)		• •	} C	, @ 		0	•	⊕ ⊕	0	0		○ ⊕)	⊕ ⊕	⊕	<u>-</u>
			ı															

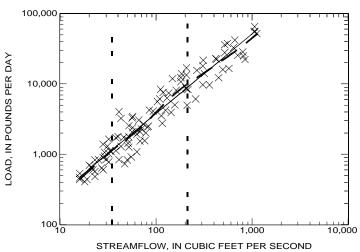
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

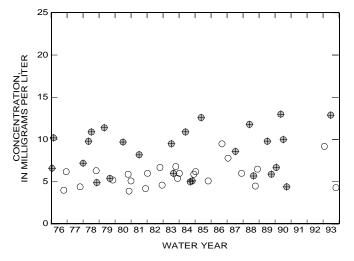
RELATION OF CONCENTRATION TO STREAMFLOW

× UNCENSORED VALUE

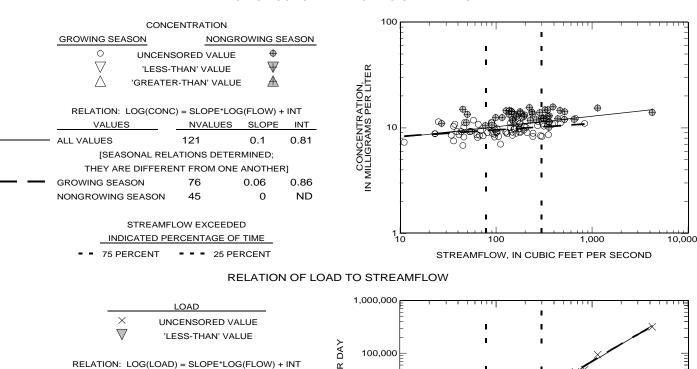

VLESS-THAN' VALUE

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT



	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	+
V.	'LESS-THAN' VALUE	₩.
Δ	'GREATER-THAN' VALU	E A
тр	ENDS IN CONCENTRAT	ION

TRENDS IN CONCENTRATION								
VALUES	NVALUES	NWYS	SLOPE					
LOW FLOW	25	14	ND					
HIGH FLOW	26	14	0					

RELATION OF CONCENTRATION TO STREAMFLOW

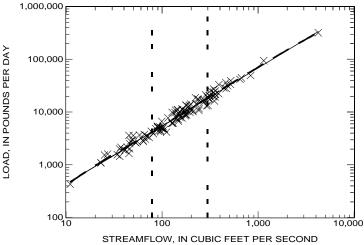
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

LOW FLOW

HIGH FLOW

ALL VALUES


NVALUES

SLOPE

STREAMFLOW EXCEEDED

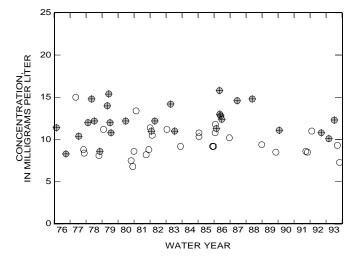
INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				
LOW FLOW			HIGH FLOW			
0	UNCENSORE	VALUE	⊕			
√ 'LESS-THAN' VALUE √						
△ 'o	SREATER-THA	N' VALUE	\blacksquare			
TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			

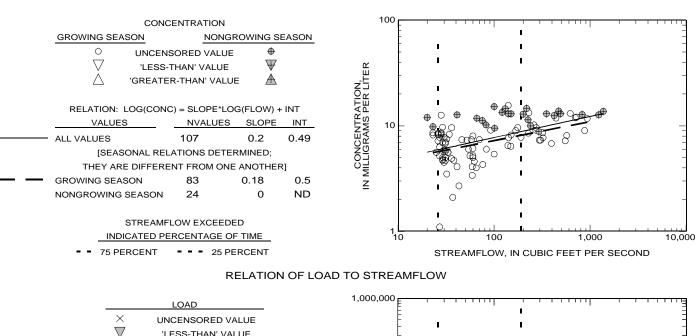
14


13

0

O

30


27

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

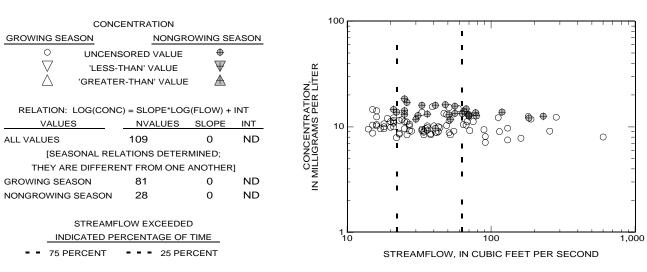
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	L L L L L L L L L L L L L L L L L L L
ALL VALUES 107 1.2 1.22 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10,000 I I I I I I I I I I I I I I I I I
75 PERCENI 25 PERCENI	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	RATION				1		' '		' '		' '			'
LOW FLOW			HIGH FLOW												
$\bigvee_{\mathbf{v}}$	UNCENSORE 'LESS-THAN' GREATER-THA	VALUE	⊕ ₩ ±	ATION, PER LITER	20 –										
VALUES LOW FLOW	NDS IN CONC NVALUES 8	NWYS 7	SLOPE ND	CONCENTRATI	15 -		⊕ ⊕	⊕	⊕	·	\$ ○	0		⊕ [⊕]	· ⊕
HIGH FLOW	30	13	0	CO IN MILL	5 –	⊕	⊕ ∉	+	4	• C	\$ C	0)		


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

25 -

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

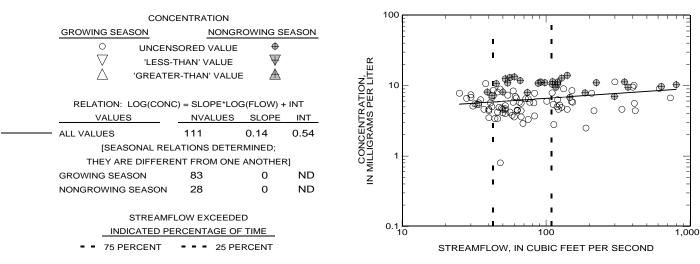
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	>	100,000	1 1		×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE	·	10,000	1 1		
ALL VALUES 109 0.99 — SMOOTHED RELATION BETWEEN LOAD AND FL	1.79 SQ NOO O	- - -		××··	-
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	LOAD, IN	1,000			
75 PERCENT 25 PERCENT	-	100		100	1,000
			STREAMFLOW, IN C	UBIC FEET PER S	ECOND

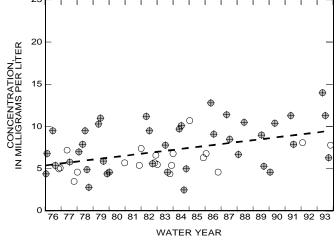
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

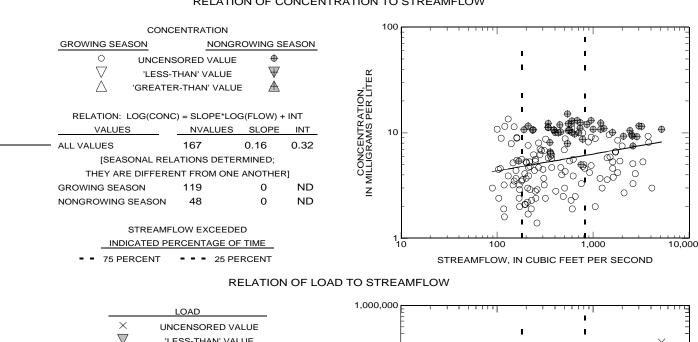

CONCENTRATION		
LOW FLOW	HIGH FLOW	
○ UNCENSORED VALU VIESS-THAN' VALU OREATER-THAN' VALU	ne ♥	20 – –
TRENDS IN CONCENTRA	ATION A P	
VALUES NVALUES NWY	S SLOPE Z	
LOW FLOW 23 12	ND Şë 1	
HIGH FLOW 31 16	O O WILLO	
	<u>Z</u>	5 –

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW


RELATION OF LOAD TO STREAMFLOW

LOAD	100,000		
 ✓ UNCENSORED VALUE ✓ 'LESS-THAN' VALUE 	-		
	10,000		
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000	× ×	-
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT		1 1× 1	=
	100	100 STREAMFLOW, IN CUBIC FEET PER SECO	1,000

					23			
CONCENTRATION								
LOW FLOW	1		HIGH FLOW					
o ∇ Δ	UNCENSORE 'LESS-THAN 'GREATER-THA	'VALUE	⊕₩A	NO R LITER	20 -			
TF	RENDS IN CONC	CENTRAT	ION	RAT 8 PE	15			
VALUES	NVALUES	NWYS	SLOPE	ΣŽ				
LOW FLO	w 20	11	ND	ACE GR/	10			
HIGH FLO	w 39	15	0.23	A CO	4			
				=	*			

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD

X UNCENSORED VALUE

VLESS-THAN' VALUE

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

VALUES

NVALUES

SLOPE

INT

ALL VALUES

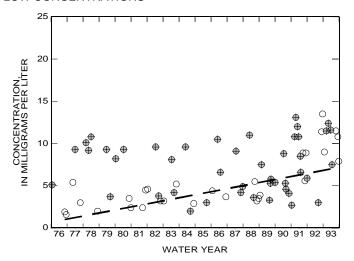
167

1.16

1.05

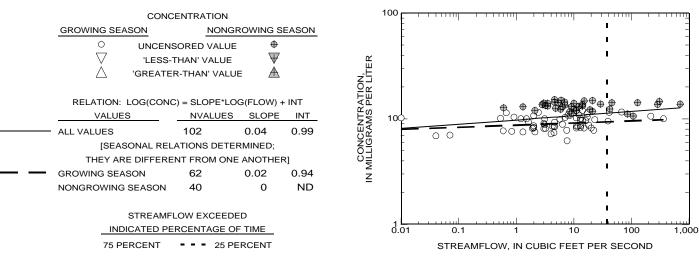

SMOOTHED RELATION BETWEEN LOAD AND FLOW
(SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT


		CONCENTR	ATION	
<u>. I</u>	LOW FLOW			HIGH FLOW
	О U	NCENSORE	D VALUE	⊕
	▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
	△ 'GF	REATER-THA	N' VALUE	Ε Α
	TREN	DS IN CONC	ENTRAT	ION
	VALUES	NVALUES	NWYS	SLOPE
	LOW FLOW	29	14	0.36
	HIGH FLOW	45	17	0

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

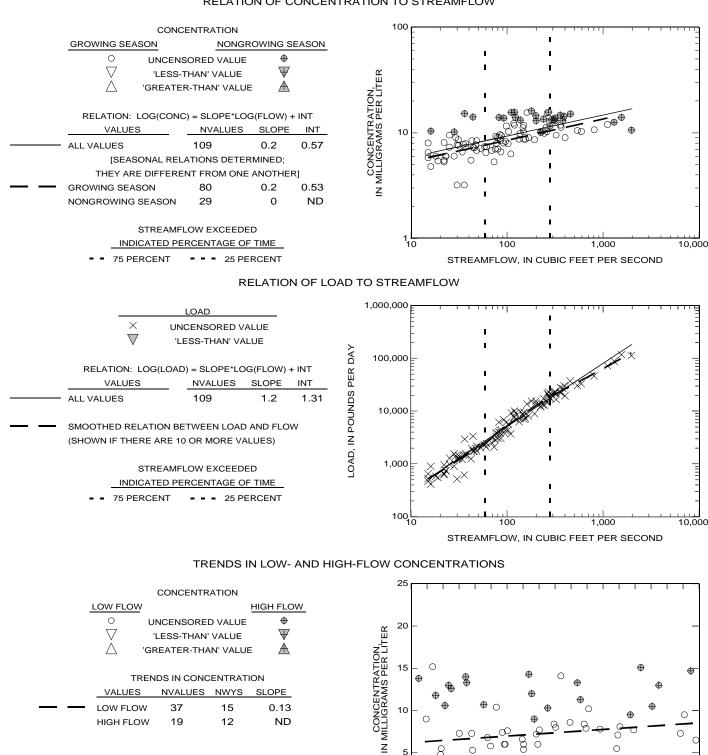
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD		100,000	
×	UNCENSORED VALUE 'LESS-THAN' VALUE	>	10,000	
RELATION: LOG VALUES	G(LOAD) = SLOPE*LOG(FLOW) NVALUES SLOPE	PE TAIL +	1000	
ALL VALUES	102 1.04	1.72	100	
- SMOOTHED RELAT	ION BETWEEN LOAD AND FLO	ow g	Ē	
(SHOWN IF THERE	ARE 10 OR MORE VALUES)	Z O	10	^
STR	REAMFLOW EXCEEDED	LOAI	E F	'
INDICAT	ED PERCENTAGE OF TIME		1	· I
75 PERCE	ENT 25 PERCENT		F	
			0.1 0.01	0.1 1 10 100 1,00
				STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION				
LOW FLOW	IGH FLOW			
○ UNCENSORED VALUE VILESS-THAN' VALUE VILESS-THAN' VALUE	⊕ ₩ ₩ A	_		-
TRENDS IN CONCENTRATION		₩ ₩		— Ф
LOW FLOW 0 0 HIGH FLOW 13 7	MILLIGRAMMY MILLIG	⊕ ⊕	+ + + + + + + + + +	
	≥ <u>Z</u> 5.	_		

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

10

5

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

LOW FLOW

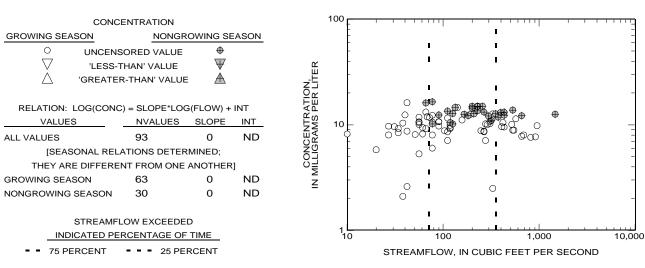
HIGH FLOW

37

19

15

12


0.13

ND

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

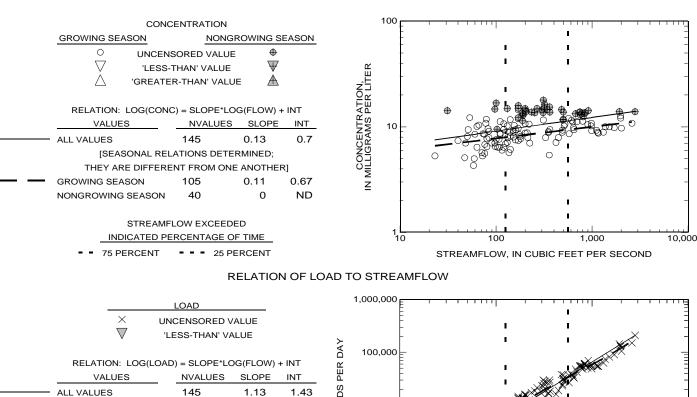
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD				100,000	- 			
		NCENSORED V			<u>}</u>	-	i 1	ا ا		=
	ON: LOG(LOA	AD) = SLOPE*LO	OG(FLOW) SLOPE	+ INT INT	PER D/	10,000	1		!	
ALL VALUES	S	93	1.07	1.59	NDS	-	×	×	Í	=
		BETWEEN LOAD		W	POL	-	//×'	× I	ı	-
(SHOWN IF	THERE ARE	10 OR MORE V	ALUES)		AD, IN	1,000		I	I I	
		FLOW EXCEED PERCENTAGE O			Ю,		·	1		=
_	5 PERCENT		ERCENT			-	İ	Ī	! !	-
						100		100	1,000	10,000
							STREAMF	LOW, IN CUBI	C FEET PER S	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			1					' '
LOW FLOW			HIGH FLOW	_						
	INCENSOREI 'LESS-THAN' REATER-THA	VALUE		Ë.	20	-				_
TREA	IDS IN CONC	ENITRAT	ION	CONCENTRATION.	15	-	⊕		C	0 0
VALUES	NVALUES	NWYS	SLOPE_	N S S S				0	*	\$
LOW FLOW	25	7	ND	NCE GRA	10 -	-	0 ()	• 🕏	⊕ ⊕
HIGH FLOW	19	6	ND	WILLI MILLI			\Phi	₩	φ Φ	, " @
				Z	5	-				0 0
							0		0	

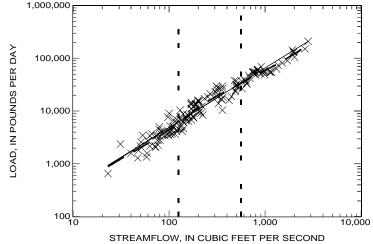

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

25

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

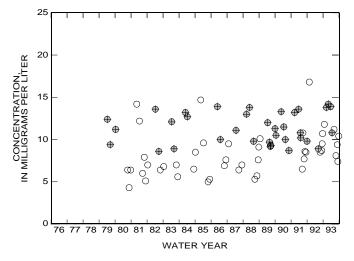
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

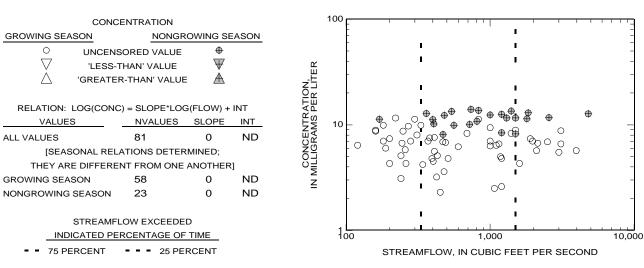


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT



CONCENTRATION	
I	HIGH FLOW
UNCENSORED VALUE	Φ
'LESS-THAN' VALUE	$\overline{\Psi}$
'GREATER-THAN' VALU	E A
RENDS IN CONCENTRAT	TION
	/ UNCENSORED VALUE 'LESS-THAN' VALUE 'GREATER-THAN' VALU

TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	45	13	ND			
HIGH FLOW	35	13	ND			

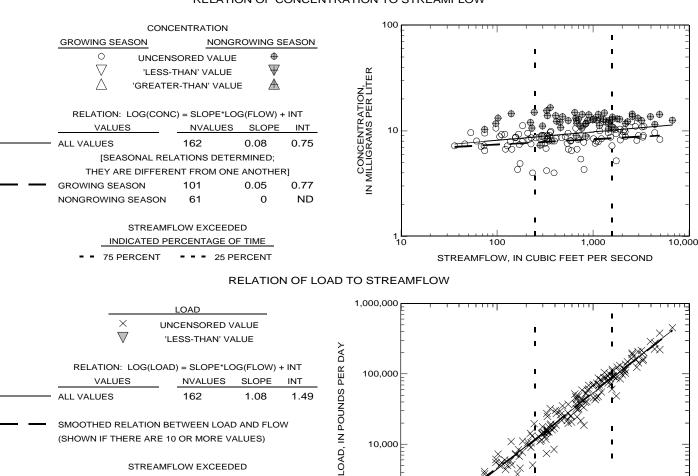
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	1,000,000
$ imes$ uncensored value $ ilde{\mathbb{V}}$ 'Less-Than' value	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	H 100,000 H X X X H
VALUES NVALUES SLOPE INT ALL VALUES 81 1.05 1.46	— "
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SLOWAN IS THERE ARE 40 OR MORE VALUES)	
(SHOWN IF THERE ARE 10 OR MORE VALUES)	9 10,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	9 ×× · ^
75 PERCENT 25 PERCENT	1000
	1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

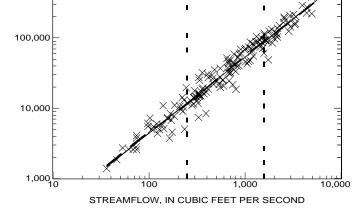
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

25 -

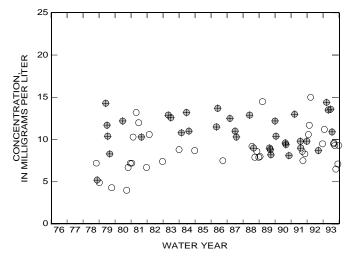

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

	CONCENTR	RATION	
LOW FLOW			HIGH FLOV
Ο υ	JNCENSORE	D VALUE	
	LESS-THAN	' VALUE	$\overline{\Psi}$
△ 'G	REATER-THA	AN' VALU	e 🛦
TREN	NDS IN CONC	CENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	20	5	ND
HIGH FLOW	17	4	ND

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

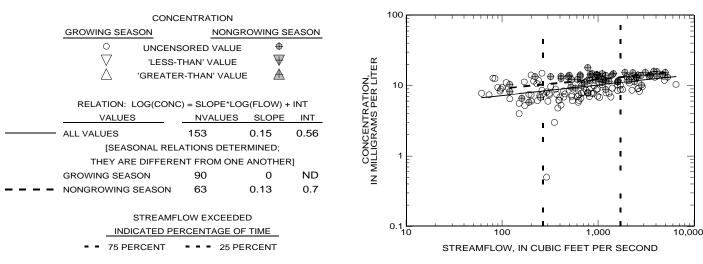

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME 25 PERCENT 75 PERCENT


CONCENTRATION							
LOW FLOW			HIGH FLOW				
Ο υ	NCENSORE	D VALUE	⊕				
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$				
△ 'GREATER-THAN' VALUE ⚠							
TREN	DS IN CONC	ENTRATI	ION				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	36	13	0				
HIGH FLOW	36	14	0				

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

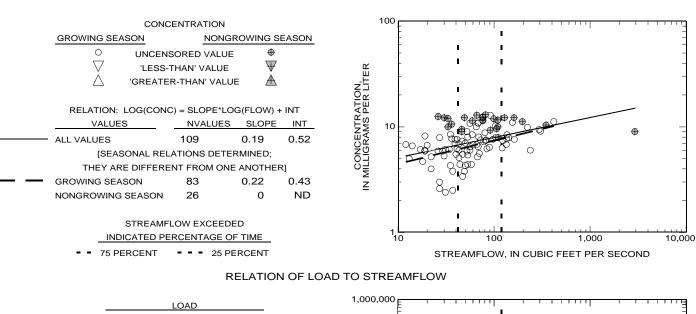
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	1,000,000		
× UNCENSORED VALUE	Ē	ı .	
V 'LESS-THAN' VALUE	<u>}</u>	ı	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	100,000 Y		
VALUES NVALUES SLOPE INT	E E		=
ALL VALUES 153 1.15 1.29	FDS	ı	-
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	10,000 N		
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	1,000	i K	_
75 PERCENT 25 PERCENT	F	ı ı	=
	100	100 1,000	10,000
		STREAMELOW IN CUBIC FEET PER SI	ECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	RATION				25		1	1				1			Г
LOW FLOW			HIGH FLOW	<u></u>												
٥ ر	INCENSORE	D VALUE	⊕		•	20	_									
∇	LESS-THAN	VALUE	$\overline{\Psi}$		ËR											
△ 'GI	REATER-THA	AN' VALU	e 🛦		ATION, PER LIT											
					EE		₽	•	4							
TREN	NDS IN CONC	CENTRAT	ION		TRA 1S P		(Φ.	ФО	0		\oplus			
VALUES	NVALUES	NWYS	SLOPE		ΣÃ		#	⊕ €		Ψ()	^	(Ο.	0		
LOW FLOW	33	12	ND		38.	10	_	0	Ψ	() (A)	⊕	⊕	_		
HIGH FLOW	33	13	0		ğΞ			0	⊕ ⊕	0)	⊕				
					o≣			8) Č	í			0		
					Z	5	_		8			0			()
						-		0								

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

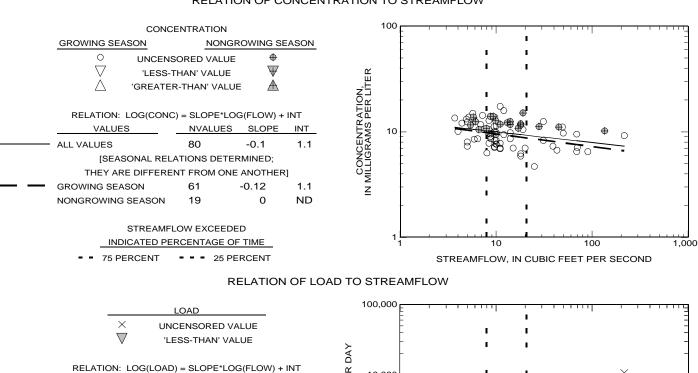
APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				1,000,000	1 1 1		1 1 1 1 1 1 1		
>	UNCENSORED V			>	-	1	!		/×	- - -
RELATION:	LOG(LOAD) = SLOPE*LO	OG(FLOW)	+ INT	R DA	100,000					
VALUE	S NVALUES	SLOPE	INT	PE	E					=
ALL VALUES	109	1.19	1.25	DS	-	-	i			-
	ELATION BETWEEN LOAI ERE ARE 10 OR MORE V)W	D, IN POUR	10,000	I I **********************************	!	×		 - - -
IND	STREAMFLOW EXCEED			LOA	1,000		* ` '			
= = 75 P	ERCENT = = = 25 F	ERCENT			100	· · · · · · · · · · · · · · · · · · ·			ul i	
					100 10		100	1	1,000	10,00
						STREA	AMFLOW	, IN CUBIC FEET	PER SECONE)

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

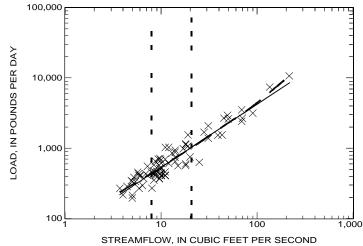

CONCENTRATION		
LOW FLOW HIGH FLOW		
O UNCENSORED VALUE ♥ VIESS-THAN' VALUE ▼ O GREATER-THAN' VALUE ★ TRENDS IN CONCENTRATION	CONCENTRATION, IN MILLIGRAMS PER LITER	5-
VALUES NVALUES NWYS SLOPE	ÄZ	
LOW FLOW 35 15 0	2 <u>6</u> 10	o⊢
HIGH FLOW 18 12 0	CO	
	≥ Z ₅	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

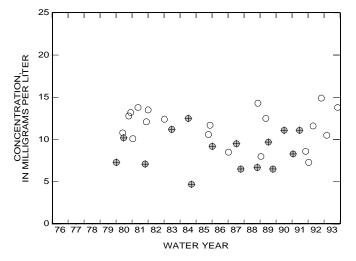
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


VALUES NVALUES SLOPE INT
ALL VALUES 80 0.9 1.83

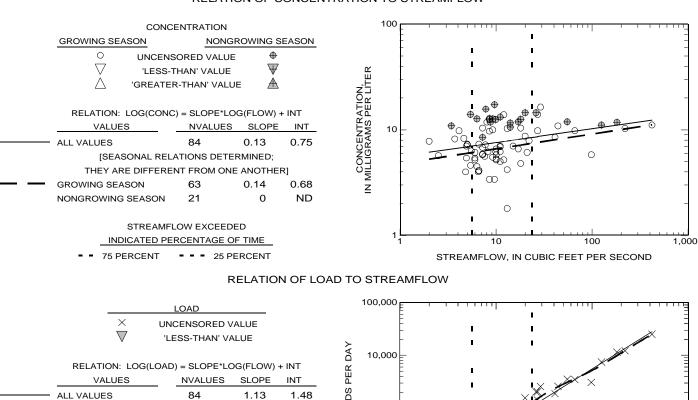
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

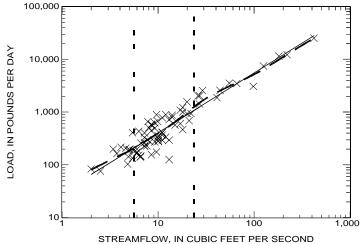
	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
Δ,	GREATER-THAN' VALU	e 🕭


TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	20	10	ND				
HIGH FLOW	15	10	ND				

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

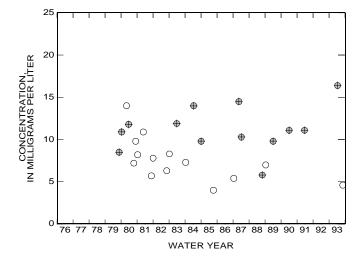


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

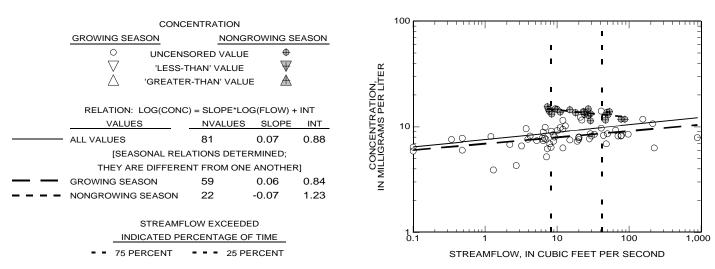
75 PERCENT - 25 PERCENT


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION						
LOW FLOW			HIGH FLOW			
Ο υ	NCENSORE	O VALUE	⊕			
\triangle	LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'G	REATER-THA	N' VALUE	■ 🛦			
TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	14	9	ND			

11

ND


HIGH FLOW

APPENDIX 8. Relations of constituent concentration and load to streamflow and trends in concentration with time DISSOLVED OXYGEN 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	>	100,000		 		
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE	·	1,000				
SMOOTHED RELATION BETWEEN LOAD AND FL (SHOWN IF THERE ARE 10 OR MORE VALUES)	.ow NO.	100		** **********************************	1 1	- - - - -
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	- -	10	^	I I 10	100	1,000
			STREAMFLOW	, IN CUBIC FEE	ET PER SECONE)

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
O UNCENSORED VALUE ♥ VIESS-THAN' VALUE ▼ OREATER-THAN' VALUE ★	N 20	-
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	NTRATIC	
LOW FLOW 27 13 ND HIGH FLOW 18 11 ND	CONCENTRATION, IN MILLIGRAMS PER LIT 0 0 5	

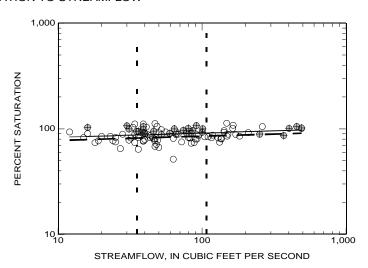
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

Appendix 9

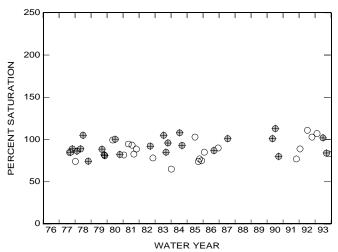
Fraction of dissolved oxygen at saturation

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.


RELATION OF CONCENTRATION TO STREAMFLOW

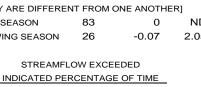
CONG	CENTRATION							
GROWING SEASON	NONG	ROWING SI	EASON					
O UNCEN	SORED VALUE							
√ 'LESS	abla 'LESS-THAN' VALUE $ abla$							
△ 'GREATE	△ 'GREATER-THAN' VALUE ⚠							
RELATION: LOG(CON	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT							
VALUES	NVALUES	SLOPE	INT					
ALL VALUES	106	0.04	1.88					
[SEASONAL RE	LATIONS DETE	RMINED;						
THEY ARE DIFFERI	THEY ARE DIFFERENT FROM ONE ANOTHER]							
GROWING SEASON	79	0.04	1.85					
NONGROWING SEASON	27	0	ND					
STREAMF	FLOW EXCEEDE	ĒD						

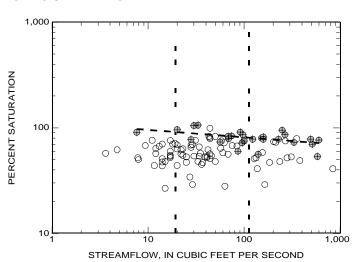
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

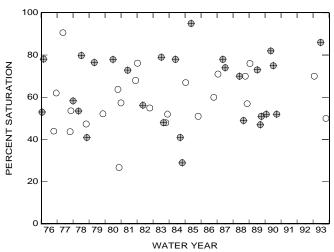
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


LOW FLOW			HIGH FLOW			
0	UNCENSORE	D VALUE	⊕			
∇	'LESS-THAN' VALUE					
	'GREATER-THAN' VALUE					
TRE	ENDS IN CONC	ENTRAT	ION			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	22	11	ND			
HIGH FLOV	v 24	11	ND			


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON	NONGE	ROWING SE	EASON	
O UNCENS	SORED VALUE	Φ		
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$		
	R-THAN' VALUI	E A		
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT				
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	109	0	ND	
[SEASONAL RELATIONS DETERMINED;				
THEY ARE DIFFERENT FROM ONE ANOTHER]				
GROWING SEASON	83	0	ND	
 NONGROWING SEASON	26	-0.07	2.05	
STREAMFLOW EXCEEDED				

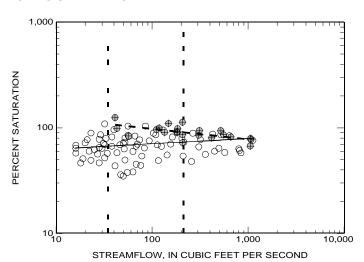
75 PERCENT


- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

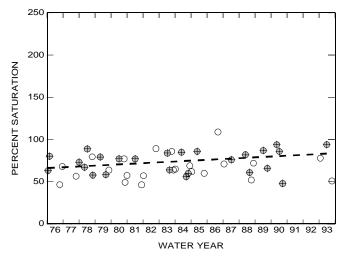
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	24	14	ND
HIGH FLOW	28	15	0

CONCENTRATION


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON	NONGF	ROWING SE	EASON	
O UNCENS	SORED VALUE	Φ		
V 'LESS-	THAN' VALUE	$\overline{\Psi}$		
	R-THAN' VALUI			
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT				
VALUES	NVALUES	SLOPE	INT	
 ALL VALUES	101	0.05	1.75	
[SEASONAL RELATIONS DETERMINED;				
THEY ARE DIFFERENT FROM ONE ANOTHER]				
GROWING SEASON	79	0	ND	
 NONGROWING SEASON	22	-0.1	2.19	

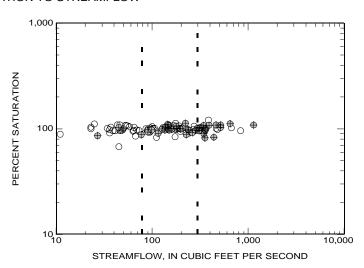
STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

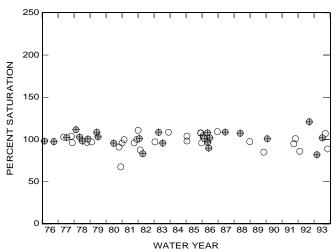
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

_	LOW FLOW			HIGH FLOW
	Ο υ	NCENSORE	D VALUE	⊕
	▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
	△ 'GF	REATER-THA	N' VALUE	■ ▲
	TREN	IDS IN CONC	ENTRAT	ION
	VALUES	NVALUES	NWYS	SLOPE
	LOW FLOW	23	14	ND
	HIGH FLOW	25	14	0.98



RELATION OF CONCENTRATION TO STREAMFLOW

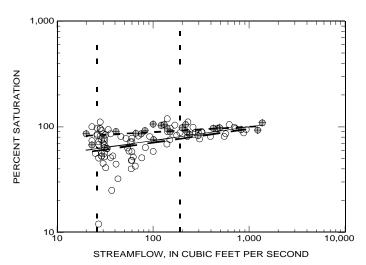
CONCENTRATION				
GROWING SEASON NONGROWING SEASO				
O UNCENS	ORED VALUE			
√ 'LESS-T	HAN' VALUE	\forall		
	R-THAN' VALUE	: <u>A</u>		
RELATION: LOG(CONC) = SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	115	0	ND	
[SEASONAL RELATI	ONS NOT DET	ERMINED;		
THEY ARE NOT DIFFER	RENT FROM ON	NE ANOTHE	ER]	
GROWING SEASON	72	ND	ND	
NONGROWING SEASON	43	ND	ND	
STREAMFLOW EXCEEDED				
INDICATED PERCENTAGE OF TIME				


= = 25 PERCENT

75 PERCENT

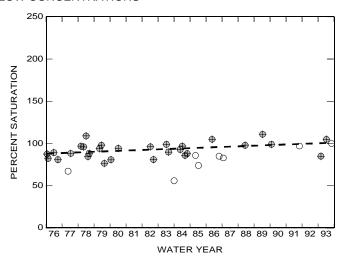
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
O U	NCENSORE	D VALUE	
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	30	14	0
HIGH FLOW	25	13	0


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION			
GROWING SEASON	NONGE	ROWING SE	EASON
O UNCEN	SORED VALUE		
√ 'LESS-THAN' VALUE ▼			
△ 'GREATER-THAN' VALUE ▲			
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT			
VALUES	NVALUES	SLOPE	INT
 ALL VALUES	106	0.13	1.61
[SEASONAL REL	ATIONS DETER	RMINED;	
THEY ARE DIFFERENT FROM ONE ANOTHER]			
 GROWING SEASON	83	0.13	1.59
 NONGROWING SEASON	23	0.05	1.85
STREAME	LOW EXCEEDE	D	

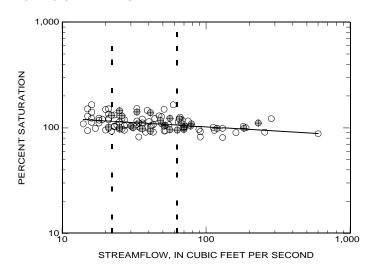
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

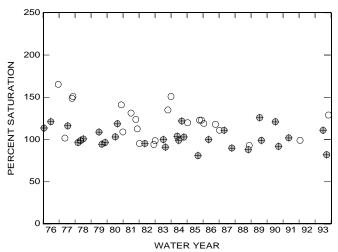
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	00.102.11.10.1			
<u>_</u>	LOW FLOW			HIGH FLOW
	Ο υ	NCENSORE	D VALUE	⊕
	\triangle ,	LESS-THAN'	VALUE	$\overline{\Psi}$
	△ 'GF	REATER-THA	N' VALUE	A
	TREN	DS IN CONC	ENTRATI	ON
	VALUES	NVALUES	NWYS	SLOPE
	LOW FLOW	8	7	ND
	HIGH FLOW	29	13	0.72


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION			
WING SEASON	NONGF	ROWING SE	EASON
O UNCENS	SORED VALUE	•	
V 'LESS-	ΓHAN' VALUE	₩.	
△ 'GREATE	R-THAN' VALUE	■ 🛦	
ELATION: LOG(CONC	C) = SLOPE*LO	G(FLOW) +	INT
VALUES	NVALUES	SLOPE	INT
/ALUES	108	-0.08	2.17
[SEASONAL RELAT	IONS NOT DET	ERMINED;	
THEY ARE NOT DIFFERENT FROM ONE ANOTHER]			ER]
WING SEASON	80	ND	ND
GROWING SEASON	28	ND	ND
STREAMFI	LOW EXCEEDE	:D	
	OWING SEASON O UNCENS VIESS- O'GREATEI ELATION: LOG(CONC VALUES VALUES [SEASONAL RELAT HEY ARE NOT DIFFEI WING SEASON GROWING SEASON	OWING SEASON NONGF O UNCENSORED VALUE VIESS-THAN' VALUE 'GREATER-THAN' VALUE ELATION: LOG(CONC) = SLOPE*LOG VALUES NVALUES VALUES 108 [SEASONAL RELATIONS NOT DET HEY ARE NOT DIFFERENT FROM OF WING SEASON 80 GROWING SEASON 28	WING SEASON O UNCENSORED VALUE VILESS-THAN' VALUE O'GREATER-THAN' VALUE ELATION: LOG(CONC) = SLOPE*LOG(FLOW) + VALUES NVALUES VALUES 108 O.08 [SEASONAL RELATIONS NOT DETERMINED; HEY ARE NOT DIFFERENT FROM ONE ANOTH WING SEASON 80 ND

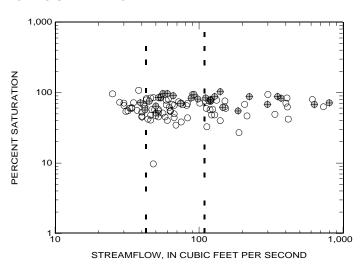
75 PERCENT


INDICATED PERCENTAGE OF TIME

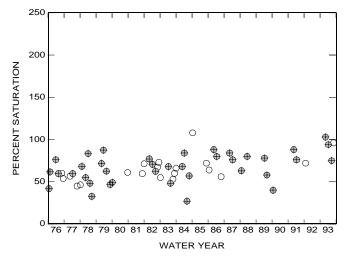
- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	00.102.111		
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	O VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	23	12	ND
HIGH FLOW	30	16	0


RELATION OF CONCENTRATION TO STREAMFLOW

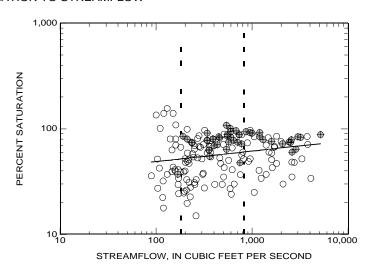
CONCENTRATION				
GROWING SEASON	NONGR	OWING SE	ASON	
O UNCENSO	DRED VALUE			
√ 'LESS-T⊦	IAN' VALUE	$\overline{\Psi}$		
△ 'GREATER-	THAN' VALUE	\triangle		
RELATION: LOG(CONC)	= SLOPE*LOG	(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	110	0	ND	
[SEASONAL RELA	TIONS DETER	MINED;		
THEY ARE DIFFEREN	T FROM ONE	ANOTHER]	l	
GROWING SEASON	83	0	ND	
NONGROWING SEASON	27	0	ND	
STREAMFLOW EXCEEDED				


INDICATED PERCENTAGE OF TIME

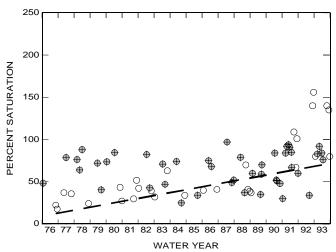
- - 25 PERCENT

75 PERCENT

CONCENTRATION				
LOW FLOW			HIGH FLOW	
O U	NCENSOREI	D VALUE	Φ	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GF	REATER-THA	N' VALUE	■ ▲	
TREN	DS IN CONC	ENTRAT	ION	
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	20	11	ND	
HIGH FLOW	38	15	0	


RELATION OF CONCENTRATION TO STREAMFLOW

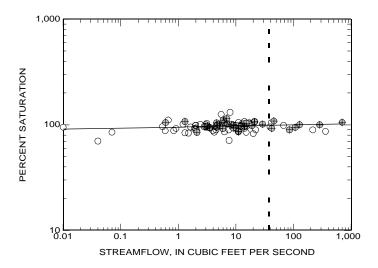
CONCENTRATION				
GROWING SEASON	NONGR	OWING SE	EASON	
'LESS-	SORED VALUE THAN' VALUE R-THAN' VALUE	⊕₩A		
RELATION: LOG(CONG	C) = SLOPE*LOG NVALUES	G(FLOW) + SLOPE	INT INT	
 ALL VALUES	165	0.1	1.49	
[SEASONAL REL	ATIONS DETER	MINED;		
THEY ARE DIFFERE	NT FROM ONE	ANOTHER	t]	
GROWING SEASON	117	0	ND	
NONGROWING SEASON	48	0	ND	
STREAMF	LOW EXCEEDE	D		


75 PERCENT

INDICATED PERCENTAGE OF TIME

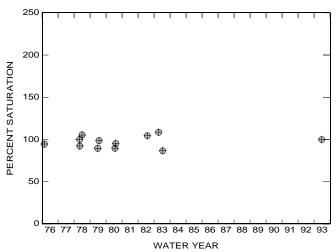
- - 25 PERCENT

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	+
\triangle ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
 LOW FLOW	29	14	3.46
HIGH FLOW	44	17	0


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON NONGROW			EASON	
O UNCENS	SORED VALUE			
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$		
△ 'GREATE	R-THAN' VALUI	■ ▲		
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT				
VALUES	NVALUES	SLOPE	INT	
 ALL VALUES	100	0.01	1.98	
[SEASONAL RELAT	IONS NOT DET	ERMINED;		
THEY ARE NOT DIFFERENT FROM ONE ANOTHER]				
GROWING SEASON	61	ND	ND	
NONGROWING SEASON	39	ND	ND	
STREAMFI	LOW EXCEEDE	D		

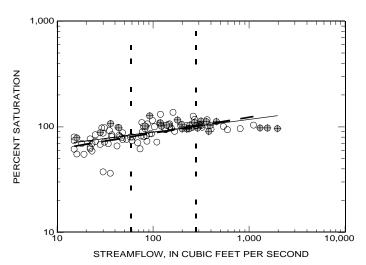
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

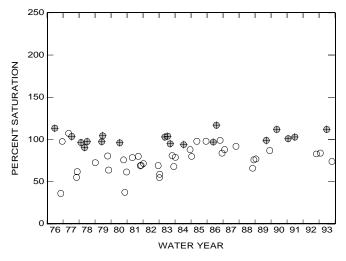
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW	1			HIGH FLOW
0	UNC	CENSOR	RED VALUE	⊕
∇	'LE	SS-THA	N' VALUE	$\overline{\Psi}$
\triangle	'GRE	ATER-TI	HAN' VALUI	E A
TF	REND	S IN COI	NCENTRAT	ION
VALUES	1	VALUE	S NWYS	SLOPE
LOW FLO	W	0	0	ND
HIGH FLO	W	12	7	ND


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON	NONGE	ROWING SE	EASON	
O UNCENS	SORED VALUE	Φ		
√ 'LESS-	ΓHAN' VALUE	$\overline{\Psi}$		
△ 'GREATE	R-THAN' VALUI	E A		
RELATION: LOG(CONC) = SLOPE*LO	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
 ALL VALUES	107	0.12	1.71	
[SEASONAL REL	ATIONS DETER	RMINED;		
THEY ARE DIFFERE	NT FROM ONE	ANOTHER	!]	
 GROWING SEASON	79	0.15	1.64	
NONGROWING SEASON	28	0	ND	
STREAMFI	_OW EXCEEDE	ED		

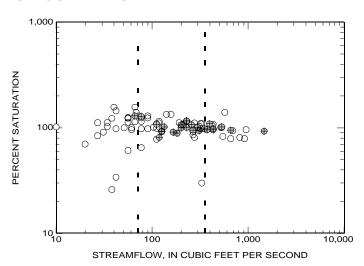
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

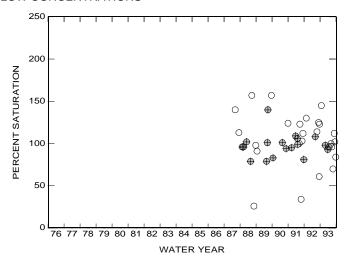
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
О U	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	A
TREN	IDS IN CONC	ENTRAT	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	37	15	0
HIGH FLOW	19	12	ND



RELATION OF CONCENTRATION TO STREAMFLOW

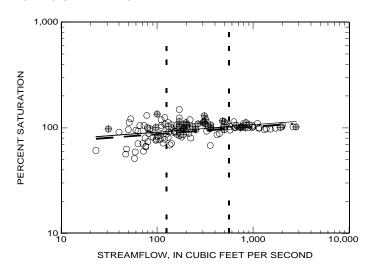
CONCENTRATION				
GROWING SEASON NONGROWING SEAS			ASON	
O UNCENS	ORED VALUE	(
√ 'LESS-T	'HAN' VALUE	$\overline{\Psi}$		
	R-THAN' VALUE	<u> </u>		
RELATION: LOG(CONC) = SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	91	0	ND	
[SEASONAL RELATI	ONS NOT DET	ERMINED;		
THEY ARE NOT DIFFER	RENT FROM ON	IE ANOTHE	ER]	
GROWING SEASON	63	ND	ND	
NONGROWING SEASON	28	ND	ND	
STREAMFLOW EXCEEDED				
INDICATED PERCENTAGE OF TIME				


- - 25 PERCENT

75 PERCENT

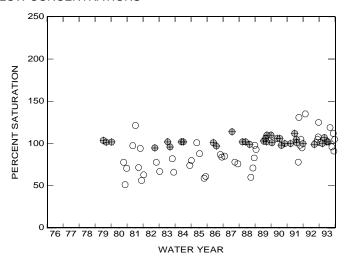
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	
∇	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	25	7	ND
HIGH FLOW	19	6	ND


RELATION OF CONCENTRATION TO STREAMFLOW

	CONCENTRATION				
GI	GROWING SEASON NONGROWING SEASO				
	'LE:	ENSORED VALUE SS-THAN' VALUE ATER-THAN' VALUE	₩ ₩ A		
	RELATION: LOG(CO	ONC) = SLOPE*LO	G(FLOW) +	INT	
	VALUES	NVALUES	SLOPE	INT	
——— AL	L VALUES	142	0.07	1.82	
	[SEASONAL I	RELATIONS DETER	RMINED;		
	THEY ARE DIFFE	ERENT FROM ONE	ANOTHER	?]	
— — GF	ROWING SEASON	102	0.07	1.8	
NC	ONGROWING SEASO	N 40	0	ND	
	STREA	MFLOW EXCEEDE	:D		

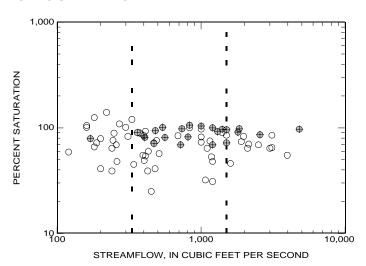
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

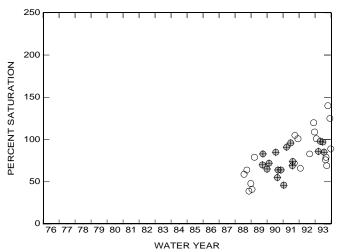
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	+
∇	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	45	13	ND
HIGH FLOW	34	13	ND



RELATION OF CONCENTRATION TO STREAMFLOW

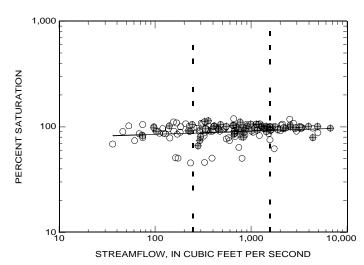
CONCENTRATION				
GROWING SEASON NONGROWING SEASON				
O UNCENSO	ORED VALUE			
√ 'LESS-TH	IAN' VALUE	\forall		
△ 'GREATER-	THAN' VALUE	: <u>A</u>		
RELATION: LOG(CONC)	= SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	79	0	ND	
[SEASONAL RELA	TIONS DETER	MINED;		
THEY ARE DIFFEREN	T FROM ONE	ANOTHER:	l	
GROWING SEASON	56	0	ND	
NONGROWING SEASON	23	0	ND	
STREAMFLOW EXCEEDED				
INDICATED PERCENTAGE OF TIME				


- - 25 PERCENT

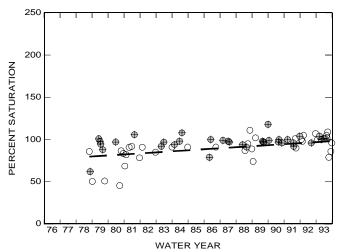
75 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	A
TREN	IDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	19	5	ND
HIGH FLOW	17	4	ND

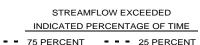

RELATION OF CONCENTRATION TO STREAMFLOW

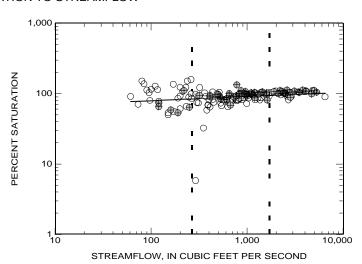
	CONCENTRATION				
GROWING SEA	GROWING SEASON		OWING SE	ASON	
	UNCENSOR 'LESS-THA 'GREATER-TI	N' VALUE	⊕ ₩ ≜		
	LOG(CONC) =		,		
VALUES	<u> </u>	NVALUES	SLOPE	INT	
ALL VALUES	1	59	0.03	1.87	
[SEASO]	[SEASONAL RELATIONS NOT DETERMINED;				
THEY ARE N	THEY ARE NOT DIFFERENT FROM ONE ANOTHER]				
GROWING SEA	SON	98	ND	ND	
NONGROWING	SEASON	61	ND	ND	
STREAMFLOW EXCEEDED					


75 PERCENT

INDICATED PERCENTAGE OF TIME

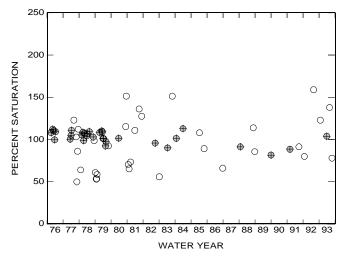
- - 25 PERCENT




	CONCENTRATION			
LOW FLOW	1		HIGH FLOW	
0	UNCENSORE	D VALUE		
∇	'LESS-THAN	'LESS-THAN' VALUE		
\triangle	'GREATER-THA	N' VALUE	E A	
TR	TRENDS IN CONCENTRATION			
VALUES	NVALUES	NWYS	SLOPE	
— LOW FLOV	N 35	13	1.21	
HIGH FLO	w 36	14	0	

RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON	NONGR	OWING SE	ASON	
O UNCEN	SORED VALUE			
C 'LESS-	THAN' VALUE	$\overline{\Psi}$		
	R-THAN' VALUE	■ ▲		
RELATION: LOG(CONG	C) = SLOPE*LO	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
 ALL VALUES	151	0.06	1.78	
[SEASONAL RELATIONS NOT DETERMINED;				
THEY ARE NOT DIFFERENT FROM ONE ANOTHER]				
GROWING SEASON	89	ND	ND	
 NONGROWING SEASON	62	ND	ND	

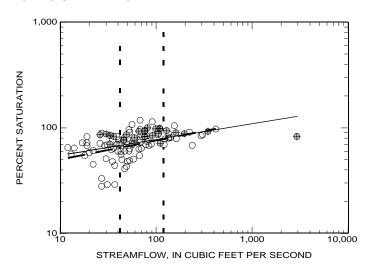

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

HIGH FLOW

Ο υ	UNCENSORED VALUE			
\triangle	'LESS-THAN' VALUE			
△ 'GI	'GREATER-THAN' VALUE			
TRENDS IN CONCENTRATION				
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	33	12	ND	
HIGH FLOW	32	12	ND	

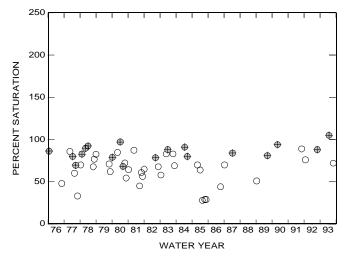
CONCENTRATION

LOW FLOW



RELATION OF CONCENTRATION TO STREAMFLOW

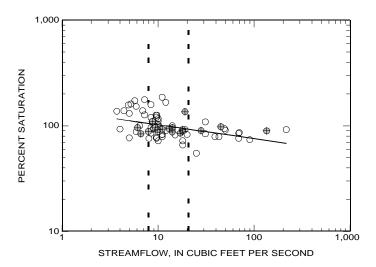
	CONCENTRATION								
GROWING SEAS	ON NO	ONGROWING S	EASON						
	UNCENSORED V 'LESS-THAN' VA	ALUE #							
RELATION: L	OG(CONC) = SLOF	PE*LOG(FLOW) + LUES SLOPE	- INT INT						
ALL VALUES	107	0.15	1.59						
[SEASC	NAL RELATIONS	DETERMINED;							
THEY ARE	DIFFERENT FROM	M ONE ANOTHER	۲]						
GROWING SEAS	ON 81	0.18	1.52						
NONGROWING S	SEASON 26	0	ND						
_	STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME								


75 PERCENT

- - 25 PERCENT

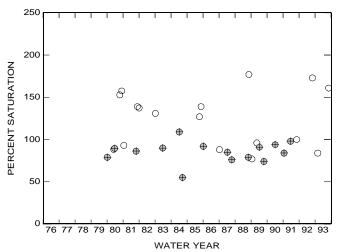
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
Ο υ	+		
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	A
TREN	DS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	35	15	0
HIGH FLOW	18	12	0


RELATION OF CONCENTRATION TO STREAMFLOW

	CONCENTRATION									
GROWING SEA	SON	NONGR	OWING SE	ASON						
0	UNCENSOR	RED VALUE	Φ							
∇	'LESS-THA	N' VALUE	$\overline{\Psi}$							
\triangle	'GREATER-T	HAN' VALUE	\triangle							
RELATION:	LOG(CONC) =	SLOPE*LOG	(FLOW) +	INT						
VALUE	<u> </u>	NVALUES	SLOPE	INT						
ALL VALUES		77 -	-0.13	2.14						
[SEASOI	NAL RELATION	NS NOT DET	ERMINED;							
THEY ARE I	NOT DIFFERE	NT FROM ON	IE ANOTH	ER]						
GROWING SEA	SON	60	ND	ND						
NONGROWING	SEASON	17	ND	ND						
	STREAMFLOW EXCEEDED									

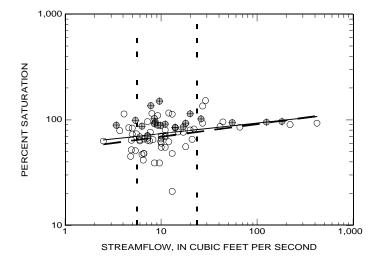
75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

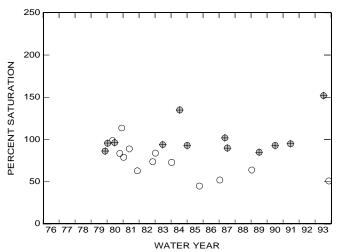
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW			
٥ ر	⊕					
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'GI	REATER-THA	N' VALUE	■ ▲			
TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	17	10	ND			
HIGH FLOW	15	10	ND			



RELATION OF CONCENTRATION TO STREAMFLOW

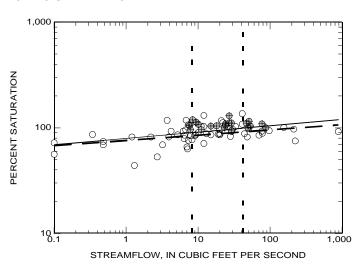
(CONCENTRATION										
GROWING SEASON	NONGROWING SEASON										
, 'L	ICENSORED VALUE ESS-THAN' VALUE EATER-THAN' VALUE										
RELATION: LOG(VALUES	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT										
ALL VALUES	81 0.1 1.77										
[SEASONAL	RELATIONS DETERMINED;										
THEY ARE DIF	FERENT FROM ONE ANOTHER]										
GROWING SEASON	60 0.12 1.72										
NONGROWING SEAS	SON 21 0 ND										
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME											


- - 25 PERCENT

75 PERCENT

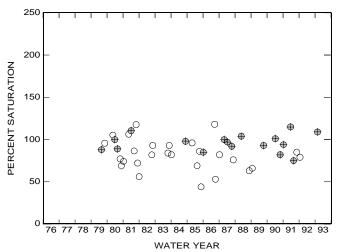
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW
Ο υ	⊕		
∇	LESS-THAN'	VALUE	$\overline{\Psi}$
∕\ 'GF	A		
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	13	9	ND
HIGH FLOW	12	10	ND


RELATION OF CONCENTRATION TO STREAMFLOW

	CONCENTRATION								
GROWING SEAS	SON	NONGRO	OWING SE	ASON					
•	UNCENSORE	D VALUE	+						
∇	'LESS-THAN	VALUE	$\overline{\Psi}$						
\triangle	'GREATER-THA	AN' VALUE	\mathbb{A}						
RELATION: L	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT								
VALUES	N	VALUES	SLOPE	INT					
ALL VALUES	79	9	0.06	1.9					
[SEASO	[SEASONAL RELATIONS DETERMINED;								
THEY ARE	DIFFERENT FF	ROM ONE A	NOTHER]						
GROWING SEAS	50N 57	7	0.05	1.88					
NONGROWING S	SEASON 22	2	0	ND					
\$	STREAMFLOW EXCEEDED								

75 PERCENT


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTION						
LOW FLOW	HIGH FLOW					
Ο υ	 UNCENSORED VALUE 					
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'GF	REATER-THA	N' VALUE	■ ▲			
TREN	DS IN CONC	ENTRAT	ON			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	27	13	ND			
HIGH FLOW	17	11	ND			

Appendix 10 Total phosphorus

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 10. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL PHOSPHORUS 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

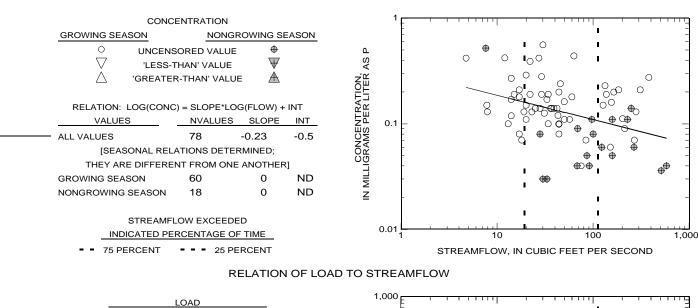
RELATION OF CONCENTRATION TO STREAMFLOW

CONC	CENTRATION				1 E	1 1	1 1 1		1 1	1 1 1	_
GROWING SEASON	NONGR	OWING S	EASON		ļ.			ī			
O UNCEN	SORED VALUE			۵	F		I	1			
√ 'LESS-	THAN' VALUE	\forall		AS	f		I	ı		\oplus	
	R-THAN' VALUE	<u> </u>		ŽΫ́	t			C)		
				은특	-	0	_	! 0			
RELATION: LOG(CON	C) = SLOPE*LOC	(FLOW) +	- INT	R.R.		00 (10	600	\circ		
VALUES	NVALUES	SLOPE	INT	CONCENT! GRAMS PE	0.1	00 0	<u>۾</u> ۾		0		
ALL VALUES	107	0	ND	S N N	Ē	m 9	<u>,</u> 000 00	b			
[SEASONAL REL	ATIONS DETER	MINED;		SA A	- 0				0	Φ.	
THEY ARE DIFFERE	NT FROM ONE	ANOTHER	R]	_	-	00 00		*** O***O	$\circ \oplus$	•	
GROWING SEASON	80	0	ND	Z Z	+		⊕	o •		\oplus	
NONGROWING SEASON	27	0	ND	Z	L		• •			0	
										, ,	
STREAMF	LOW EXCEEDE	D			0.01	. \	· 'l · \				
INDICATED PE	RCENTAGE OF	TIME		,	0.01 10	A	₩	100			
- 75 PERCENT	25 PE	RCENT				STREAM	IFLOW, IN	CUBIC FEE	T PER S	ECOND	

RELATION OF LOAD TO STREAMFLOW

$\overline{\mathbb{V}}$	UNCENSORED V			>	-	1	
,	LOAD) = SLOPE*LO			PER D,	100	. •	×××
VALUES ALL VALUES	NVALUES 107	1.03	-0.53	OUNDS P	E	· · · · · · · · · · · · · · · · · · ·	
SMOOTHED RELATION			DW .	IN POUR	10		× ×
	:AMFLOW EXCEED ED PERCENTAGE (LOAD,		××××××××××××××××××××××××××××××××××××××	. \
75 PERCE	NT = = = 25 P	ERCENT			1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

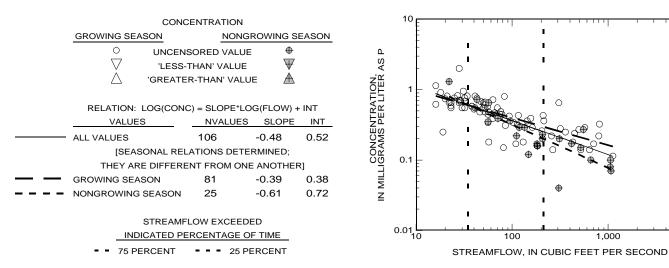

CONCENTRATION	0.9	.5		1	ı ı	1 1			ı	1 1	
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE ⊕ ○ 'LESS-THAN' VALUE ₩ △ 'GREATER-THAN' VALUE ★	ION, TER AS P	.4 —	⊕								_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	CONCENTRATION, IN MILLIGRAMS PER LITER O :: 0	.3 –		⊕							_
LOW FLOW 22 11 ND HIGH FLOW 25 11 ND	CONC LIGRAM:	.2 –	0		0	Φ.				•	_ _
	<u>Z</u> 0.	.1 –	°			♣ 0 ○ ⊕ ⊕	, o •	+	æ	o d	o o - - ••••••
	0.0	.0 76	$\overline{\mathbb{A}}$	79 80	81 8	2 83 84	85 86	87 88	89 90	91	92 93

1,000

STREAMFLOW, IN CUBIC FEET PER SECOND

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW


LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	Ϋ́	1,000		I I	' × ' × ' ×	-
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + IN VALUES NVALUES SLOPE IN	III	100		× × ×		(
ALL VALUES 78 0.77 0	0.23	- - -	×		×××	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	N PC	10 =	× '> × '>		(₁	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	LOAD	Ē	/* ×	× ×	1	= - -
75 PERCENT 25 PERCENT		1	10	1 1	I 00	1,000
			STREAMFLOW,	IN CUBIC FEET F	PER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

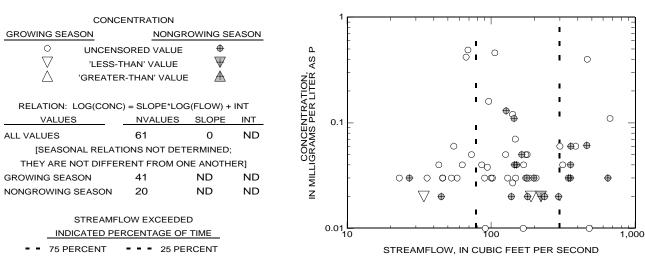
CONCENTRATION		1.0		
O UNCENSORED VALUE ○ 'LESS-THAN' VALUE ○ 'GREATER-THAN' VALUE	HEW AS P	0.8	_	_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS S	CONCENTRATION.	0.6	0	_
LOW FLOW 15 9 HIGH FLOW 21 10	I GONO DI DI GENERALI DE CONO DI DI CONO DI CO	0.4	_ 0	○ ⊕
	IN MIL	0.2	+	83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

10,000


LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	10,000
	1,000 X X X X X X X X X X X X X X X X X X
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	TOO X X I X X X I X X X I X
	10 100 1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

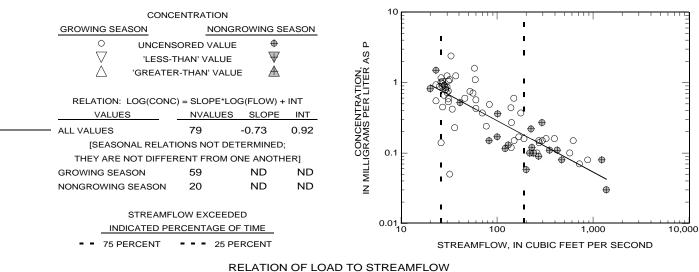
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE	വ ഗ 2.0	_
abla 'LESS-THAN' VALUE $ abla$	⋖	
riangle 'GREATER-THAN' VALUE $ riangle$	JON, TER,	
	<u></u>	5 -
TRENDS IN CONCENTRATION	PER.	0
VALUES NVALUES NWYS SLOPE		0
LOW FLOW 24 13 ND	CONCE GRAMS	
HIGH FLOW 25 14 0	00 80	
	N WILL N W 0.5	
	Z	• • • •

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	>	1,000	I I	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW)) + INT	1,000	, , , , , , , , , , , , , , , , , , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SMOOTHED RELATION BETWEEN LOAD AND FLO (SHOWN IF THERE ARE 10 OR MORE VALUES)	OW OO NI	100		× × -
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	POPE	10	1 × × × × × × × × × × × × × × × × × × ×	1,000
			STREAMFLOW, IN CUBIC FEET PER	SECOND

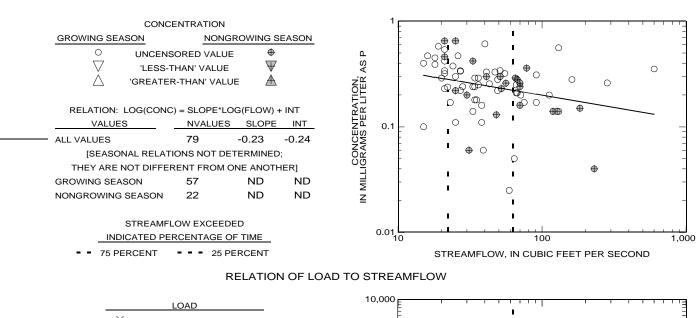
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	(0.5	1 1	1 1	- 1	1 1	ı	ı	1 1	1 4	<u> </u>	-	1	
LOW FLOW HIGH FLO														
○ UNCENSORED VALUE ⊕	AS P	0.4	_								0			_
	•													
		0 0												
TRENDS IN CONCENTRATION	CONCENTRATION,	0.3	_											
VALUES NVALUES NWYS SLOPE	πΩ .Σσ													
LOW FLOW 15 10 ND	SAMC (0.2	-											-
HIGH FLOW 12 9 ND	25													
	<u> </u>	0.4												⊕
	Z	0.1	_						•	Φ.			4	. ^
		4					0	0 (Ψ.	⊕ ○⊕		(⊕ (20	→ O
	(0.0	76 77 7	8 79 8	30 81	82 8	33 84				89 9	0 91	<u> </u>	i.

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

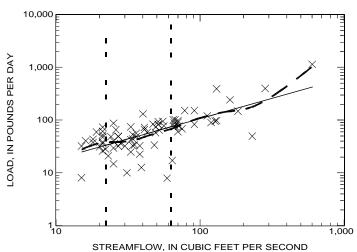
LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	>	1,000	1× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW)	+ INT	100	×	* !	
SMOOTHED RELATION BETWEEN LOAD AND FLO (SHOWN IF THERE ARE 10 OR MORE VALUES)	DW 80	10	.×	1	-
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	LOA	1	 	1	-
		10	100 STREAMELOW	1,000 IN CUBIC FEET PER :	10,000 SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

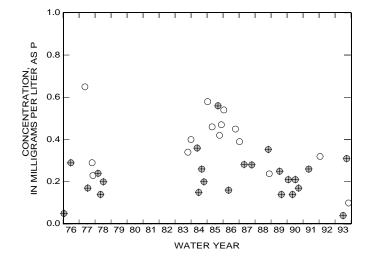
	CONCENTR	ATION				' '			' '			'		' '	'
LOW FLOW			HIGH FLOW												
1U O	NCENSORE	D VALUE	+	S P	2.0	L									_
ا' 🗸	_ESS-THAN	VALUE	$\overline{\Psi}$	⋖											
△ 'GR	EATER-THA	N' VALUE	■ 🛦	RATION,											
				Ę.	1.5	- 0									
TREN	DS IN CONC	ENTRAT	ION	돘삤											
VALUES	NVALUES	NWYS	SLOPE	CONCENTR							0				
LOW FLOW	8	7	ND	AM	1.0	_				_	0				_
HIGH FLOW	23	10	ND	S.S.					0	0					
				Ξ											
				N M I	0.5	F									<u>C</u>
				Z											
					1	•	•			₽	Ф		+ +	.⊕○	⊕
					0.0		8 79 80	01 02	02 0	9 <u> </u>	96 9	7 99		-	
						16 // /	0 /9 00	01 02	03 0	4 00	00 0	7 00	09 90	91	92 93

WATER YEAR

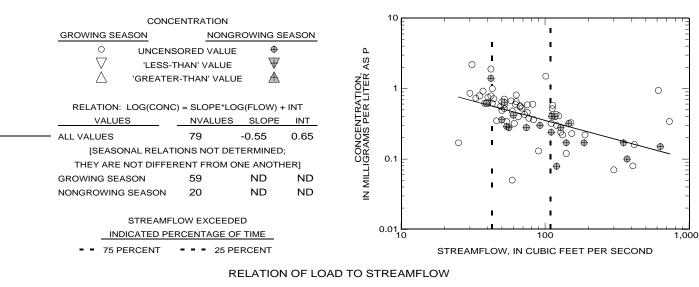
2.5


RELATION OF CONCENTRATION TO STREAMFLOW

	×							
	ON: LOG(LC	OAD) = SLOPE*LO	OG(FLOW)	+ INT INT				
ALL VALUES	s	79	0.77	0.49				
	L VALUES 79 0.77 0.4 MOOTHED RELATION BETWEEN LOAD AND FLOW HOWN IF THERE ARE 10 OR MORE VALUES)							


INDICATED PERCENTAGE OF TIME

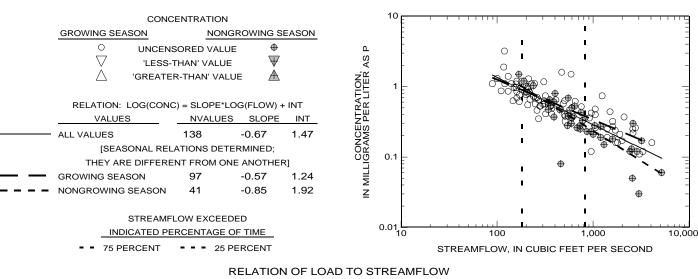
- 75 PERCENT - - 25 PERCENT



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION							
LOW FLOW	HIGH FLOW						
Ο υ	NCENSORE	O VALUE	⊕				
∇	VALUE	$\overline{\Psi}$					
△ 'GF	REATER-THA	N' VALUE	■ 🛦				
TREN	IDS IN CONC	ENTRATI	ON				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	15	8	ND				
HIGH FLOW	24	12	ND				

RELATION OF CONCENTRATION TO STREAMFLOW


LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000	× -
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 79 0.45 1.39 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT - 25 PERCENT	100 P P P P P P P P P P P P P P P P P P	1,000
	STREAMELOW IN CUBIC FEET PER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		0
○ UNCENSORED VALUE VLESS-THAN' VALUE	აგ გ 2.0 ₽	0-0
	RATION, ER LITER	5
VALUES NVALUES NWYS SLOPE	SPENT	
LOW FLOW 14 8 ND	ŽŽ 1.0	0
HIGH FLOW 28 11 ND	CONCE IGRAMS	
	■ N	5 -
	≥ _{0.5} <u>Z</u>	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD		10,000	 	1 1 1 1 1	'''	1 1 1 1	
×	UNCENSORED VALUE		Ė					=
∇	'LESS-THAN' VALUE	>	-		; ×>	$\langle \cdot \cdot \times \rangle$	×¥ ×	-
RELATION: LOG(I	_OAD) = SLOPE*LOG(FLOW) -	ے HINT کے	-		1	~,* × ×	××^_	1
VALUES	NVALUES SLOPE	HINT HINT	-	×			× ×	-
VALUES	138 0.33	2.21		×			« ^	
		Š	1,000	ĺ×.		X × ×		=
MOOTHED RELATIO	N BETWEEN LOAD AND FLO	w Q	F	₩.	% *****	IV	X	7
HOWN IF THERE A	RE 10 OR MORE VALUES)	Z	F	××>	* ^`\times	ı^	×	_
		AD,	-		1	1		-
STRE	AMFLOW EXCEEDED	Ŷ.	<u> </u>		1			-
INDICATE	D PERCENTAGE OF TIME	_	-		\times	1		-
75 PERCEN	NT 25 PERCENT				i	ı		
			100	100		1,000		10,000
				STREAMFLOW.	IN CLIDIC EE	ET DED 6	ECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

С	ONCENTRATION			5.0		1	1 1	- 1	1	1 1	ı	ı	-	1 1	ı	ı	
LOW FLOW		HIGH FLOW															
	CENSORED VALUE	⊕	AS P	4.0	-												-
Ň	ATER-THAN' VALUE	Å	RATION, R LITER		0												
TREND:	S IN CONCENTRATI	ON	RAT ER LI	3.0	- 0												_
	NVALUES NWYS	SLOPE	SENT PENT														
LOW FLOW	21 10	ND	CONCE	2.0	- 0												-
HIGH FLOW	40 13	ND	22		0									_			
			N MILL		0						0			0	() C	၁ မွ
			Z	1.0	_					o .	Φ	0	C	<i>y</i> O	Q	D 6	3 🖺
				4						•		. •	₽⊕ _d	_ _⊕##		Φ.	-
				00	ı 🖈 î	*	1 1			_ ⊕ _	ı 4	₽ı	$\oplus \oplus$	/ T 1999	# A	¦, ⊕	99

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

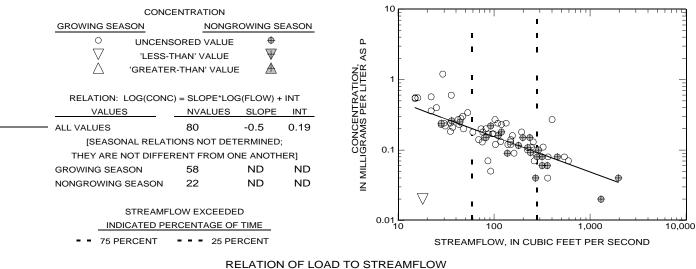
APPENDIX 10. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL PHOSPHORUS 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CON	CENTRATION			1 F	 	 		
GROWING SEASON	NONGRO	OWING SE	ASON	F			I	
O UNCEN	SORED VALUE			_			I	
√ 'LESS	THAN' VALUE	$\overline{\Psi}$		AS -	⊕		I	
△ 'GREATE	R-THAN' VALUE	$\stackrel{\cdot}{\mathbb{A}}$		LITER				
				를 H		0		
RELATION: LOG(CON	C) = SLOPE*LOG	(FLOW) +	INT	Ä'R		•		
VALUES	NVALUES	SLOPE	INT	0.1	``	0 0 0	J	
ALL VALUES	62	0	ND	NA E		`		
[SEASONAL RE	ATIONS DETERM	MINED;		88		`		
THEY ARE DIFFERI	ENT FROM ONE A	ANOTHER]	00	0	C⊕⊕⊕®Q		
GROWING SEASON	39	0	ND	 	00	∞ ∞ ∞	•	4
NONGROWING SEASON	23 -	0.41	-1	CONCENTRA CONCENTRA IN MILLIGRAMS PER	∇	OCORD ADAM	À.,	
STREAM	LOW EXCEEDED)					1 /	
INDICATED PI	RCENTAGE OF	TIME		0.01	1	<u> </u>	100	
75 PERCENT	25 PER	RCENT			STREAM	FLOW, IN CUBIC FEET	Γ PER SEC	ONE
75 PERCENT	25 PER	RCENT			STREAMI	FLOW, IN CUBIC FEET	FPER SEC	ЛC

$egin{array}{ccc} & & & & & & & \\ imes & & & & & & & \\ ilde{\mathbb{V}} & & & & & & & \\ ilde{\mathbb{V}} & & & & & & & \\ ilde{\mathbb{V}} & & & & & & \\ ilde{\mathbb{V}} & & & & & & \\ ilde{\mathbb{V}} & & & & & & \\ ilde{\mathbb{V}} & & & & & \\ ilde{\mathbb{V}} & & & & & \\ ilde{\mathbb{V}} & & & & & \\ ilde{\mathbb{V}} & & & & & \\ ilde{\mathbb{V}} & & & & & \\ ilde{\mathbb{V}} & & & & \\ ilde{\mathbb{V}} & & & & \\ ilde{\mathbb{V}} & & & & \\ ilde{\mathbb{V}} & & & & \\ ilde{\mathbb{V}} & & & & \\ ilde{\mathbb{V}} & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & & & \\ ilde{\mathbb{V}} & $	> 4	100			· · · · · · · · · · · · · · · · · · ·	×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE ALL VALUES 62 0.87	V) + INT		×	×××××××××××××××××××××××××××××××××××××××	× V	
SMOOTHED RELATION BETWEEN LOAD AND FL (SHOWN IF THERE ARE 10 OR MORE VALUES)	LOW a	-		× ×	1	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT		0.01	× \	×	1 1	
		0.1	1 STRFAME	10 FLOW IN CUBIC F	100 FEET PER SECO	1,000 DND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
O UNCENSORED VALUE ⊕ ✓ 'LESS-THAN' VALUE ₩ △ 'GREATER-THAN' VALUE ♣	CONCENTRATION, IGRAMS PER LITER AS P	-
TRENDS IN CONCENTRATION	E0.03	⊕
VALUES NVALUES NWYS SLOPE	눌	
	MS MS	
LOW FLOW 0 0 ND	Z₹ 0.02	2
HIGH FLOW 3 3 ND	<u>0</u>	
	0.01 N N	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

0.05

RELATION OF CONCENTRATION TO STREAMFLOW

$\frac{}{\mathbb{V}}$	LOAD UNCENSORED V 'LESS-THAN' VA			γAΥ	1,000	X		' × ' · · · · · · · · · · · · · · · · ·	×	T T T T T T T T T T T T T T T T T T T
RELATION: LOG(I	_OAD) = SLOPE*LO	G(FLOW)	+ INT	ж П	100	×、			×	
VALUES	NVALUES	SLOPE	INT	8		× ×		(îx		=
ALL VALUES	80	0.5	0.92	NDS	Ē	×/	***^^^ . ×	×		=
— SMOOTHED RELATIO	N BETWEEN LOAD	O AND FLO	ow.	Pol	-	•	' ×	ī		-
(SHOWN IF THERE AF	RE 10 OR MORE V	ALUES)		Ž Ć	10			Ī		
STRE	AMFLOW EXCEED	ED		LOA	Ē)]	I		=
INDICATE	D PERCENTAGE C	OF TIME		_	-			ı		-
75 PERCEN	IT = = = 25 P	ERCENT			-	abla	ı	1		-
					10		100	1,000)	10,000
						STREA	MFLOW, IN	N CUBIC FEET PE	R SECO	ND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION					' '
LOW FLOW HIGH FLOW					
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ▲	ION, TER AS P				_
	L RA 1.5	_			_
TRENDS IN CONCENTRATION	Ë				
VALUES NVALUES NWYS SLOPE	<u> </u>	0			
LOW FLOW 24 11 ND	U≥ Z 1.0	_			_
HIGH FLOW 13 10 ND	CONCE GRAMS 0.1				
	□ ■ 0.5	0 0	_	0	
	≥ 0.5	- 0	0	O	_ 0
	∠	0	♥ 0°0 ® 8	8 0	0
		Ф. ф. ф	⊕⊕	. • . • • •	. ф

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

2.5

APPENDIX 10. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL PHOSPHORUS 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION				1 F			1 1 1		1 1	
GROWING SEASON	NONG	ROWING SEA	ASON		F			ı			=
'LESS-T	ORED VALUE THAN' VALUE R-THAN' VALU	\forall		FION, ITER AS P				1	0		- - -
RELATION: LOG(CONC) = SLOPE*LO	G(FLOW) + I	NT	RA R L		0 0	10	Qi O	0		
VALUES	NVALUES	SLOPE	INT	눌	0.1 —	A B		⊕ <u>⊕</u> ⊗⊕।	0		_
ALL VALUES	94	0	ND	CONCENTR IN MILLIGRAMS PER	Ē	0 0			0	\oplus	=
[SEASONAL RELAT	IONS NOT DE	TERMINED;		Q.X.	Į.	0	O + O	000 00 (DO O ∌⊕		-
THEY ARE NOT DIFFER	RENT FROM C	NE ANOTHE	R]		¢		0, 00	○ ○ ● ● ●			-
GROWING SEASON	65	ND	ND	<u> </u>	+	0	Ø	+			-
NONGROWING SEASON	29	ND	ND	Z	-		•	1			_
	OW EXCEEDI				0.01		I LLL		1		
INDICATED PE	RCENTAGE O	- TIME			10		100		1,000)	10,00
■ ■ 75 PERCENT		ELATION					MFLOW,	IN CUBIC F	EET PEI	R SECO	ND

RELATION OF LOAD TO STREAMFLOW

		LOAD UNCENSORED V	ΔI LIE			10,000			
	\bigvee	'LESS-THAN' VA			DAY	1,000	1	I I ×	-
	RELATION: LOG(L	OAD) = SLOPE*LC	G(FLOW)	+ INT	R	,,,,,,	Ī	×	× 1
	VALUES	NVALUES	SLOPE	INT	PE	-		× ×/×	
	ALL VALUES	94	0.98	-0.38	DS	-	-		=
- —	SMOOTHED RELATION			W	O, IN POUNDS	100	ı×		
		AMFLOW EXCEED D PERCENTAGE C T 25 P			LOAE	10	X X X I I I I I I I I I I I I I I I I I	I I I 1,00	00 10,000
						10		I,UI IN CUBIC FEET PI	

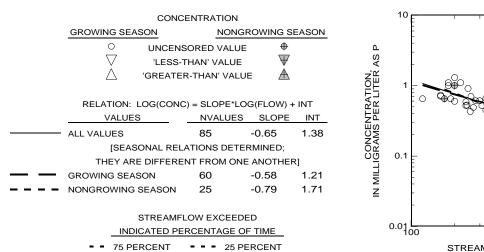
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

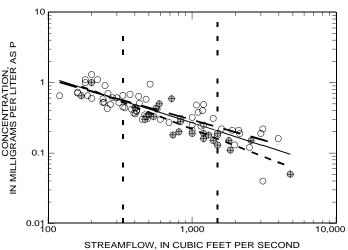
	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
	NCENSORE LESS-THAN'		$\overline{\Psi}$
	REATER-THA		_
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	25	7	ND
HIGH FLOW	19	6	ND

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

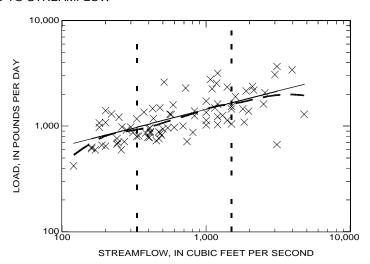
RELATION OF CONCENTRATION TO STREAMFLOW


LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 118 0.73 0.33	「
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z Q Y	X X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

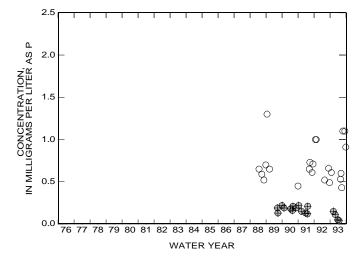
CONCENTRATION		0.5	
O UNCENSORED VALUE 'LESS-THAN' VALUE 'GREATER-THAN' VALUE	FLOW	0.4	_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOP	TTRAT	0.3	• o
LOW FLOW 34 10	CONCE DAME	0.2	8 0 0
	MILL N	0.1	
		0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

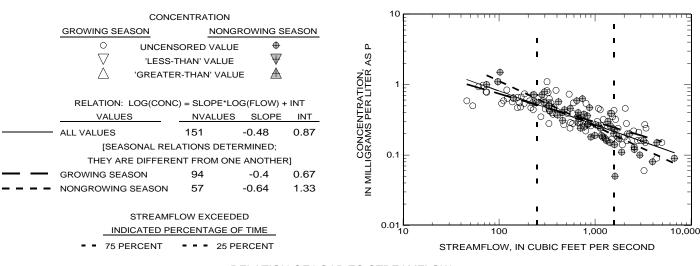

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

-		LOAD NCENSORED V LESS-THAN' V		
RELATIC	N: LOG(LOA	(D) = SLOPE*L	OG(FLOW)	+ INT
VAL	UES	NVALUES	SLOPE	INT
 ALL VALUES	3	85	0.35	2.11
 00025		BETWEEN LOA 10 OR MORE V	2712.20	W
1		FLOW EXCEED		
75	PERCENT	25 F	PERCENT	



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

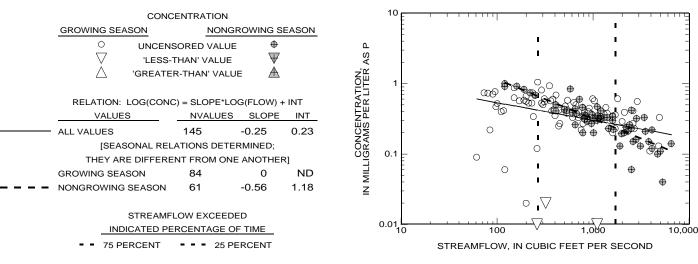

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	O VALUE	⊕
\triangle	LESS-THAN	VALUE	$\overline{\Psi}$
△ 'G	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	22	6	ND

ND

HIGH FLOW

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD	10,000
imes UNCENSORED VALUE $ imes$ 'LESS-THAN' VALUE	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	PER C
ALL VALUES 151 0.52 1.6	9 1,000 - X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	× × × ·
STREAMFLOW EXCEEDED	LOAb,
INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	× 1
	100 100 1,000 1
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

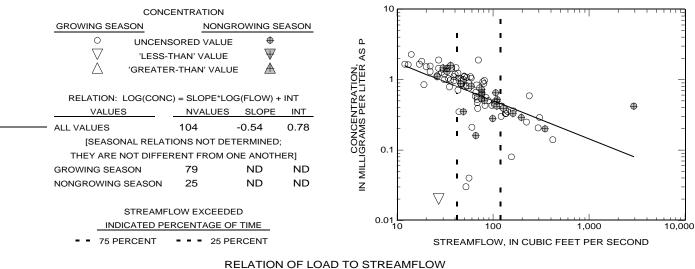
CONCENTRATION	۷.,	٦٢		- 1	- 1			-	- 1	- 1	- 1	-	-	- 1				
LOW FLOW UNCENSORED VALUE VIESS-THAN' VALUE	<	0 -	-															
TRENDS IN CONCENTRATION	PER	5 -					0	ı										
LOW FLOW 32 12 ND 22 HIGH FLOW 32 13 ND	LIGR	0 -	-				0 0	0	0		0		0		0			0
	<u>≥</u> 0.	5 -	-			0	ک ر ک) ⊕	•	0			.4		8)	+	((○ ● •

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 145 0.75 0.96	0 H H 1,000 H H H H H H H H H H H H H H H H H H
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	7 100 × 1 = 1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	Y X X X X X X X X X X X X X X X X X X X
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION						
LOW FLOW	IGH FLOW					
○ UNCENSORED VALUE □ 'LESS-THAN' VALUE □ 'GREATER-THAN' VALUE	TER AS P	0 —				_
	FA 1.	.5 –				_
TRENDS IN CONCENTRATION	N FP					
VALUES NVALUES NWYS S	SLOPE U Ø					
LOW FLOW 32 12	ND ND ND ND ND ND ND ND ND ND ND ND ND N	.0 –	0		0	_
HIGH FLOW 32 12	ND SE					
	=			0	0	
	W WILL O	.5 —	8 €000	0	⊕	
	Z			#	0	•
			8 4	⊕	+ +	• •
		J.	. ∦. ¥\$7. ,▼			. 0. 0. 0

76 77 78^V79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

2.5

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD				10,000	- 	πη.	 		
$\stackrel{ imes}{ riangledown}$	UNCENSORED VA			<u>}</u>	- - -	I I	! !			
RELATION: LOG(L VALUES	.OAD) = SLOPE*LO NVALUES	G(FLOW) SLOPE	+ INT INT	PER DA	1,000	I V. XXXX	×	X		-
ALL VALUES	104	0.46	1.51	JNDS	100		XX	*		
- SMOOTHED RELATIO			W	POL	Ē	^ ^ ×	×			
(SHOWN IF THERE AF	RE 10 OR MORE VA	LUES)		∠ Q		1 🗸	I I			
STRE	AMFLOW EXCEEDE	ΕD		LOA	10	¦×	-			
INDICATE	D PERCENTAGE O	F TIME			E		1			
75 PERCEN	T = = = 25 PE	RCENT			-	V 1	I			
					10		100	1,0	00	10,0
						STREAM	FLOW, IN	CUBIC FEET P	ER SECOND	

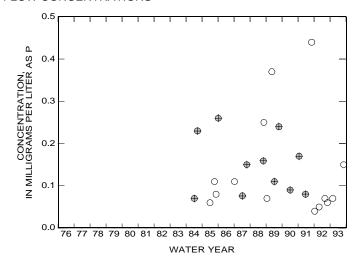
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION				' '		. '			'	'	' '	' '		' '
LOW FLOW HIGH FLOW)								
○ UNCENSORED VALUE	AS P	2.0	_											_
abla 'LESS-THAN' VALUE $ abla$				0	0)								
$ riangle$ 'GREATER-THAN' VALUE $ extcal{A}$	ΘË				0	6	_							
	Ε'n	1.5	_		Ü	8	0		~	00				_
TRENDS IN CONCENTRATION	꿃				0	0 (_	(X	~	0			
VALUES NVALUES NWYS SLOPE	CONCENTRATION, IGRAMS PER LITER			00	0	0 (0							
LOW FLOW 31 14 0	NA NA	1.0	_	00	ŏ		0		∞					_
HIGH FLOW 19 12 0	000						Ü						0	O
													0	
	IN MILL	0.5	_		0									_
	Z	4	4	***	⊕	4	→ ⊕	#				$\oplus \oplus \oplus$		⊕
		Ì	<i>P</i>	\oplus	⊕		Ψ.	⊕		\oplus		Ψ		
		0.0	70	77.70	ننب	04 00		0.4	05 0	0.07		20.00	$\sqrt{2}$	-
			76	// /8	79 80	81 82	83	84 8	85 8	6 87	88	39 90	91 9	2 93

WATER YEAR

2.5

RELATION OF CONCENTRATION TO STREAMFLOW

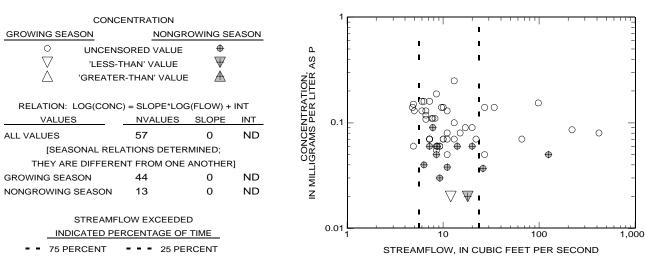

CONCI	ENTRATION				¹ F	1 1 1 1 1 1 1 1 1 1 1 1		
GROWING SEASON	NONG	ROWING SI	EASON		F	0	1	=
LESS-T	ORED VALUE "HAN" VALUE R-THAN" VALU	$\overline{\Psi}$		ON, TER AS P		⊖. ∞	1 0 0	0
RELATION: LOG(CONC) = SLOPE*LO NVALUES		· INT	CONCENTRATI IGRAMS PER LI	0.1			_
ALL VALUES	57	0	ND	MCE SCE	Ė		_	=
[SEASONAL RELATI	ONS NOT DE	TERMINED	;	A A	t			=
THEY ARE NOT DIFFER	RENT FROM (ONE ANOTH	IER]	09	F	0 .0		-
GROWING SEASON	45	ND	ND	MILLI	-	•	•	-
NONGROWING SEASON	12	ND	ND	Z	-	+ 0	1	-
STREAMFL INDICATED PEI	OW EXCEED				0.01	10	100	1,00
75 PERCENT	25 P	ERCENT		NAD TO C		STREAMFLOW, IN		ŕ

RELATION OF LOAD TO STREAMFLOW

	LOAD				1,000		
$\stackrel{ imes}{ riangledown}$	UNCENSORED '			≻	100	1	1 1
RELATION: LOG(L	.OAD) = SLOPE*L	OG(FLOW)	+ INT	R D	100	1	
VALUES	NVALUES	SLOPE	INT	PE	F	××	i×x 🌠
— ALL VALUES	57	1.17	-0.44	SONDO	10	XXX	XX
 - SMOOTHED RELATIO	N BETWEEN LOA	D AND FLC	W	PO	Ē	× .×	1
(SHOWN IF THERE AF	RE 10 OR MORE V	ALUES)		Ď,	<u> </u>		!
STRE	AMFLOW EXCEE	DED		Ō.	1 =	× × ^	-
INDICATE	D PERCENTAGE	OF TIME		_	F	-	1
75 PERCEN	T 25 F	PERCENT			F	ı	1
					0.4		

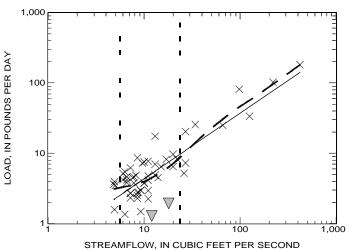
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	\blacksquare
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	14	7	ND
HIGH FLOW	11	7	ND

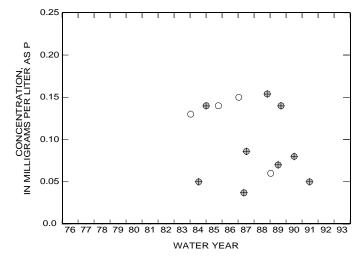

STREAMFLOW, IN CUBIC FEET PER SECOND

1,000

APPENDIX 10. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL PHOSPHORUS 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


RELATION OF LOAD TO STREAMFLOW

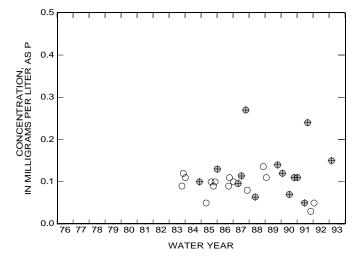
		LOAD			•	1,000	
		CENSORED \ ESS-THAN' V			DAY		
RI	ELATION: LOG(LOAD)) = SLOPE*L0	OG(FLOW)	+ INT	_	100	
	VALUES	NVALUES	SLOPE	INT	PER	100 =	
——— ALL V	/ALUES	57	0.93	-0.29	POUNDS		
smoo	OTHED RELATION BE	TWEEN LOA	D AND FLO	w	POL	-	
(SHO	WN IF THERE ARE 10	OR MORE V	ALUES)		Z	10	
	STREAMF	LOW EXCEED	DED		-OAD	Ė	;
	INDICATED PE	RCENTAGE (OF TIME		_	-	3
-	- 75 PERCENT	25 F	PERCENT			F	,

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION							
LOW FLOW			HIGH FLOW				
Ο υ	NCENSORE	O VALUE	⊕				
▽ ,	$\overline{\Psi}$						
△ 'GF	REATER-THA	N' VALUE	A				
TREN	DS IN CONC	ENTRATI	ON				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	4	4	ND				
HIGH FLOW	9	7	ND				

RELATION OF CONCENTRATION TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


0.1

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	15	9	ND
HIGH FLOW	14	8	ND

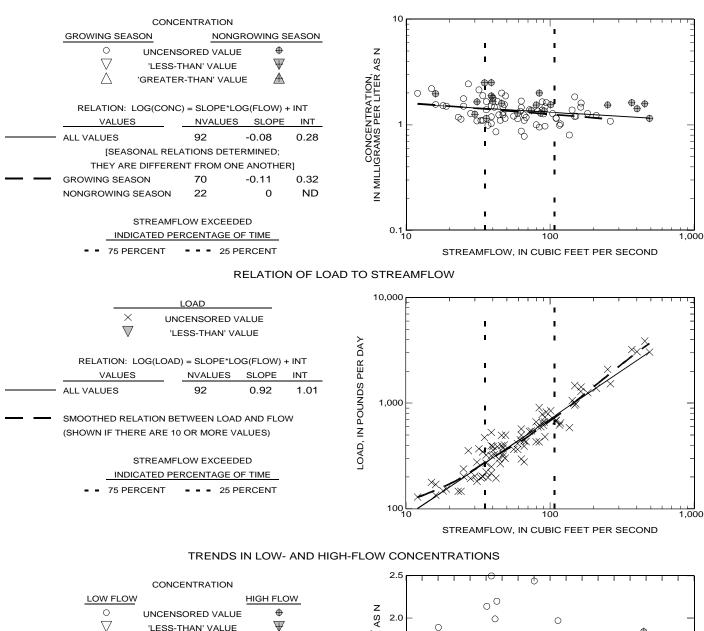
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME

25 PERCENT

75 PERCENT

STREAMFLOW, IN CUBIC FEET PER SECOND

1,000

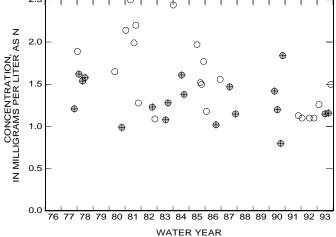

Appendix 11 Total nitrogen

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

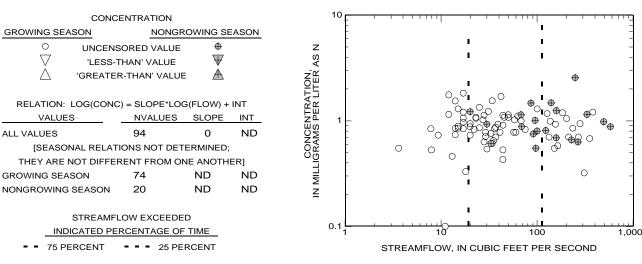
RELATION OF CONCENTRATION TO STREAMFLOW



TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	21	10	ND			
HIGH FLOW	19	10	ND			

'GREATER-THAN' VALUE

 \mathbb{A}


Δ

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES	A 1,000
ALL VALUES 94 1.03 0.61 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	SON TOOL TOOL TO THE TOTAL TO T
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	TOAD. 10 X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
	1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			
LOW FLOW	HIGH FLOW		
○ UNCENSORED VALUE VESS-THAN' VALUE OGREATER-THAN' VALUE	¥ *	Z 4.0 - ER 48 1.0 -	0
	Z.	⊒ 2.0	0
TRENDS IN CONCENTRAT	ION <u>E</u>	ji l	⊕
VALUES NVALUES NWYS	SLOPE W	S	Φ
LOW FLOW 20 11	ND Z 0 0	∑ ₹ 2.0	0
HIGH FLOW 25 14	o	C)	0 0
		_	•
		⊒	
		Z Î	
		4	

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

5.0

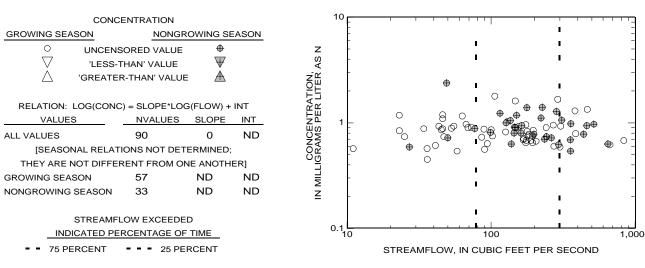
APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION		¹⁰ E		1 1 1 1 1 1 1 1	
GROWING SEASON	NONGROV	VING SEASON	ŧ			-
O UNCENS	ORED VALUE	⊕	z -			-
√ 'LESS-T	HAN' VALUE	Ψ	AS -			=
, ,	R-THAN' VALUE	À		8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	•	
<u> </u>			LITER		ŏ	
RELATION: LOG(CONC) - SI ODE*I OC/E	LOWY - INT	٩	·		
VALUES	,	LOW) + INT	CONCENTR MILLIGRAMS PER	I €	<i>₽</i> 000 ⊕80 0⊕0	
-			2ω 1 <u>-</u>	1	Φ	
ALL VALUES	95 -0.	34 1.09	25	1 1		
[SEASONAL RELAT	ONS NOT DETER	MINED;	88			
THEY ARE NOT DIFFER	RENT FROM ONE	ANOTHER]				
GROWING SEASON	75 N	ND ND	╡			
NONGROWING SEASON	20 N	ND ND	Ž .			
			_			
STREAMFL	OW EXCEEDED					
INDICATED PE	RCENTAGE OF TI	ME_	0.1	100	1,000	10,
= 75 PERCENT	25 PERC	FNT		STREAMFLOW, IN CU	IBIC FEET PER SECO	OND

	AD ISORED VALUE -THAN' VALUE	100,000	1 1		
	VALUES SLOPE INT 95 0.66 1.82	10,000	1 1		
STREAMFLOV INDICATED PERCI - 75 PERCENT -	V EXCEEDED	1,000	100	1,000	10,000


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION				
LOW FLOW HIGH FLOW				
○ UNCENSORED VALUE	ION, TER AS N 8	3		_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	CONCENTRATION, IGRAMS PER LITER 5 9	5—	-) O
LOW FLOW 22 12 ND	ZŽ 4		0000000	
HIGH FLOW 22 13 0	CO LIGR		8 % 0	
	₩ 2 ¥	2 - +	⊕ ⊕ ⊕ ⊕ ⊕ ⊕	=
	=	\$ \$	⊕ ⊕ ⊕ ⊕ ⊕ ⊕	⊕

0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN
01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

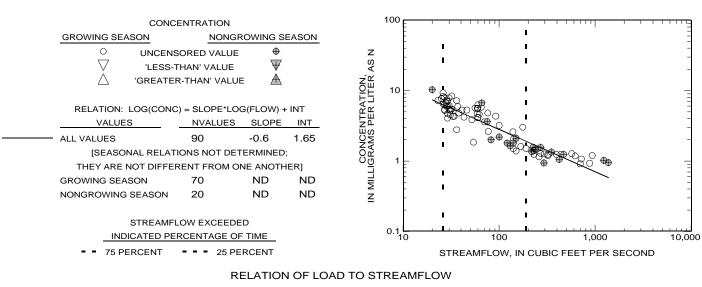
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	1,000
ALL VALUES 90 1.01 0.64 — SMOOTHED RELATION BETWEEN LOAD AND FLOW	NOON NOON NOON NOON NOON NOON NOON NOO
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	100 P
75 PERCENT 25 PERCENT	10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	
LOW FLOW HIGH FLOW	
O UNCENSORED VALUE	Σ
\times 'IESS-THAN' VALUE \times 'GREATER-THAN' VALUE \times A	TEN TEN TEN TEN TEN TEN TEN TEN TEN TEN
GREATER-THAN VALUE	는고
TRENDS IN CONCENTRATION	ΑΥ — — — — — — — — — — — — — — — — —
VALUES NVALUES NWYS SLOPE	
LOW FLOW 25 14 0	1.0 + + O O O O
HIGH FLOW 15 10 ND	
	WILL
	0.0
	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

25-

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

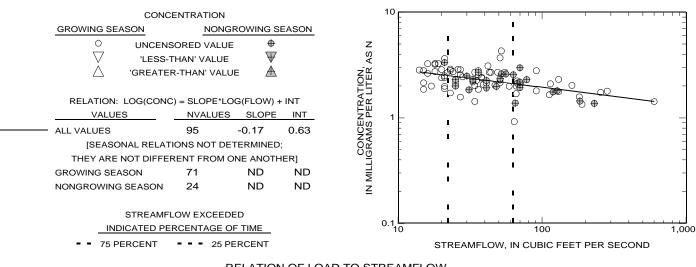
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

X UNCENSORED VALUE			LOAD			1	0,000 F			
VALUES NVALUES SLOPE INT ALL VALUES 90 0.4 2.39 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) YOU INTERPORT OF THE PROPERTY OF THE PROPERT		$\overline{\mathbb{V}}$				<u>}</u>	-	:		
— SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z Q		•	NVALUES	SLOPE	INT	_	-		×	-
Q Q						=	1,000	X		
STREAMELOW EXCEEDED	(SHOWN I	F THERE AI	RE 10 OR MORE VA	ALUES)		Ď. R	-	' [*] × ×	1	=
INDICATED PERCENTAGE OF TIME			AMFLOW EXCEED			LOA		I		-
75 PERCENT 25 PERCENT								ı	1	
100 L 100 1,000 10,00 STREAMFLOW, IN CUBIC FEET PER SECOND							100 L 10		ř	10,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		1 ' ' ' ' ' ' ' '		
LOW FLOW	HIGH FLOW			
○ UNCENSORED VALUE ▽ 'LESS-THAN' VALUE △ 'GREATER-THAN' VALUE	A SA SO SO SO SO SO SO SO SO SO SO SO SO SO			-
TRENDS IN CONCENTRATION VALUES NVALUES NWYS	ON HU NA SLOPE			
LOW FLOW 6 5 HIGH FLOW 25 11	IN MILLIGRAMS PER LITER ON CONCENTRATION 10 21 21 22 24 25 26 27 27 28 29 20 20 20 20 20 20 20 20 20		0 0	0 -
			* *	⊕⊕● ⊕


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

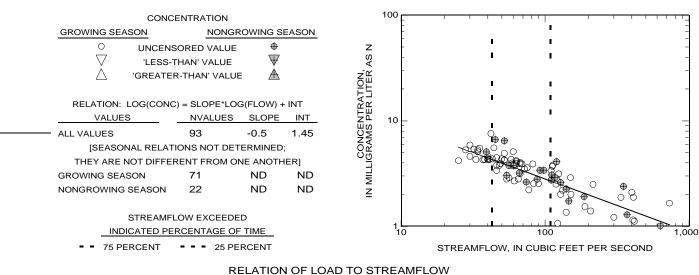
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	- I Y X/X/ X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	
	100 100 1,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	
LOW FLOW HIGH FLOW	_
○ UNCENSORED VALUE	Z Ø 4.0
√ 'LESS-THAN' VALUE √	
riangle 'GREATER-THAN' VALUE $ riangle$	2
	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRENDS IN CONCENTRATION	FINAL OCTION OCT
VALUES NVALUES NWYS SLOPE	
LOW FLOW 20 11 ND	
HIGH FLOW 29 15 0	
	ī l
	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
	<u> </u>
	0.0
	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


WATER YEAR

5.0

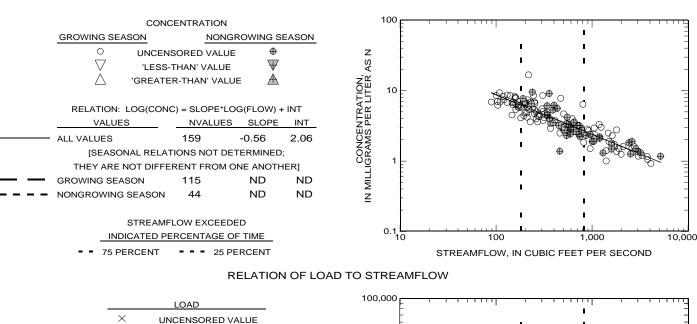
APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD	10,000
× UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	× × × ×
	NT
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	Z
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	O
75 PERCENT 25 PERCENT	100 100 1,000
	310 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

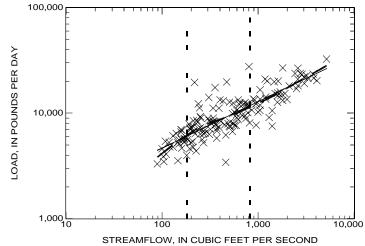

CONCENTRATION		1 .					1
LOW FLOW HIGH FLOW							
○ UNCENSORED VALUE	ION, TER AS N	8 –			0		_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	CONCENTRATION GRAMS PER LITER	6 –	0	0 0	0		0
LOW FLOW 17 10 ND	Z ŽŽ	4 –	8	⊕ാ ത്	0 0		<u>0</u>
HIGH FLOW 33 14 0	88 88	•	⊕			Φ.	•
	N MILLE	+	⊕ ⊕ ⊕	•		* • •	
	Z	₩ •	+	Δ.	⊕ ⊕	⊕	⊕

0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


X UNCENSORED VALUE						
LESS-THAN' VALUE						
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT						
VALUES	NVALUES	SLOPE	INT			
LVALUES	150	0.44	2.70			

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

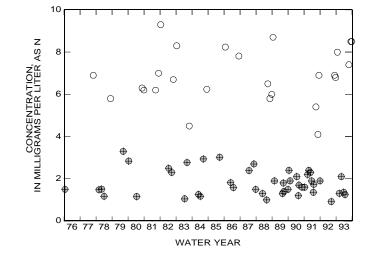
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
△ '(GREATER-THA	'N' VALUE	\blacksquare
TRE	ENDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

13

16

0


0

26

46

LOW FLOW

HIGH FLOW

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONCI	ENTRATION				10 F			 		
GROWING SEASON	NONG	ROWING S	EASON		ŧ				I	=
O UNCENS	ORED VALUE	• •		z	Į.				I	
$\overline{}$	'HAN' VALUE	$\overline{\Psi}$		AS	+			⊕	I	-
, ,	R-THAN' VALU	JE Å		TION,	+			⊕	1	-
RELATION: LOG(CONC) = SLOPE*LC	OG(FLOW) +	· INT	∢-	Ī		0 (1	
VALUES	NVALUES	SLOPE	INT	E.E.	1 —	0		o * • • • • • • • • • • • • • • • • • •	•	_
ALL VALUES	88	0	ND	CONCENTRA IGRAMS PER	Ī				₩	
[SEASONAL RELATI	ONS NOT DE	TERMINED	;	δĀ	Ė		₽ ₩		₩.	⊕ ⊕-
THEY ARE NOT DIFFER	RENT FROM C	ONE ANOTH	HER]		Ţ	0				_
GROWING SEASON	53	ND	ND	 	Ŧ			* · · •	•	-
NONGROWING SEASON	35	ND	ND	N M	_				ı	_
STREAMFL	OW EXCEED	ED							I . I	
INDICATED PE	RCENTAGE O	F TIME			0.1	0.1	1	10	100	1,000
75 PERCENT	25 P	ERCENT				STREA	MFLOW, IN C	UBIC FEET PE	ER SECON	1D
	_				D = 4 4 4 5	-1 -0 \ 4 \				

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT L	100
ALL VALUES 88 1 0.55 $\stackrel{\circ}{\Omega}$	10
SMOOTHED RELATION BETWEEN LOAD AND FLOW	
(SHOWN IF THERE ARE 10 OR MORE VALUES)	
STREAMFLOW EXCEEDED Q	
INDICATED PERCENTAGE OF TIME	0.1
75 PERCENT = = 2 5 PERCENT	
	0.01 0.1 1 10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	RATION				•							. 1
LOW FLOW			HIGH FLOW	_									
O и	NCENSORE	D VALUE	⊕	Z Ø	2.0	_							
	LESS-THAN	VALUE	$\overline{\Psi}$	⋖									
△ 'GI	REATER-THA	AN' VALUE	■ ▲	ion, Ter									
				レコ	1.5	_							_
TREN	IDS IN CONC	CENTRAT	ION	FF									
VALUES	NVALUES	NWYS	SLOPE	SE									
LOW FLOW	0	0	ND	NA NA	1.0	_			⊕				_
HIGH FLOW	9	6	ND	CONCENTRA			\oplus	Ф	⊕				
				3				#					
				IN MILLI	0.5	_	\oplus		⊕				Φ_
				∠		4							
						•							
					0.0	76 77	78 70	80.81	82 83 84	85 86 87	88 89 90	91 92	2 93
						70 77	10 /8	00 61	02 03 04	05 00 67	00 09 90	91 92	. 33

WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRA	ATION	¹⁰ F	1 1 1 1 1 1 1 1 1 1		т т т т т т
GROWING SEASON	NONGROWING SEASON	F	Φ.	I	=
○ UNCENSORED ○ 'LESS-THAN' ○ 'GREATER-THAN RELATION: LOG(CONC) = SL	VALUE #	R LITER AS N		! ! ! ₩	- - - -
, , ,	ALUES SLOPE INT	Hall 1			
ALL VALUES 93 [SEASONAL RELATION THEY ARE DIFFERENT FR	S DETERMINED;	CONCENTR IN MILLIGRAMS PEF	1		- - - -
— GROWING SEASON 71	-0.4 1.06			1	-
– – – NONGROWING SEASON 22	-0.43 1.19	<u>Z</u> -	•	1	-
STREAMFLOW E INDICATED PERCENT		0.1	100	1,000	10,000
75 PERCENT	25 PERCENT		STREAMFLOW, IN CU	IBIC FEET PER SECON	ID
	RELATION OF LOAI	D TO STREAM	MFLOW		

LOAD	10,000 × × × =
X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	
ALL VALUES 93 0.62 1.77 $\stackrel{\circ}{\Omega}$	1,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z	
STREAMFLOW EXCEEDED OF TIME	
75 PERCENT 25 PERCENT	100 100 1,000 10,000
	100 1,000 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION										
LOW FLOW		HIGH FLOW									
Ο υ	NCENSORED VALU	E ⊕	Z	3							
▽ ,	LESS-THAN' VALUE	\forall	⋖	^							
△ 'GF	REATER-THAN' VAL	UE Å	N N N N N N N N N N N N N N N N N N N								
			F- 6	3		0					
TREN	DS IN CONCENTRA	TION	H.R.	1							
VALUES	NVALUES NWYS	SLOPE	ПΩ ∑С		C)	_				
LOW FLOW	33 15	0	CONCENTRATION, IGRAMS PER LITER P 9	1 _			O		0		0 9
HIGH FLOW	15 10	ND	00.5		0	000	0	0	0	0	
					0	0 0	0	8 .			
			₩ 2 ₩ 2	_		0 0	000	0.	0 0		
			<u>z</u>			0		⊕	.		0
				⊕	\oplus^{\oplus}	Ф	₩ ⊕	⊕	* ⊕ €	₽₩	⊕
				1		Ψ	•				

0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

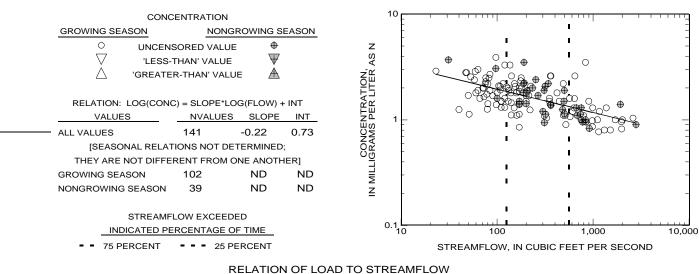
RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION			¹⁰ F		
GROWING SEASON	NONG	ROWING SE	ASON	ŧ	ı	=
CONTRACTOR (CONTRACTOR) CONTRACTOR (CONTRACTOR) CONTRACTOR (CONTRACTOR)	NVALUES	DG(FLOW) + I	INT	ENTRATION, S PER LITER AS N		- - - -
ALL VALUES 94 0 ND [SEASONAL RELATIONS NOT DETERMINED; THEY ARE NOT DIFFERENT FROM ONE ANOTHER]				CONCE	٥	-
GROWING SEASON NONGROWING SEASON	65 29	ND ND	ND ND	IN WILL	;	-
STREAMF INDICATED PE	LOW EXCEED			0.1	100 1,000	10,00
75 PERCENT	25 PI	ERCENT			STREAMFLOW, IN CUBIC FEET PER SE	COND

RELATION OF LOAD TO STREAMFLOW

LOAD	100,000
× UNCENSORED VALUE VLESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 94 1.02 0.77	1,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 × 100 1,000 10,000
	'10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION LOW FLOW HIGH FLOW UNCENSORED VALUE 'LESS-THAN' VALUE 'GREATER-THAN' VALUE TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	ENTRATION, S PER LITER AS N	2.5	
LOW FLOW 25 7 ND HIGH FLOW 19 6 ND	CONCENTRAIN MILLIGRAMS PER	1.0	
	<u>Z</u>	0.5	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

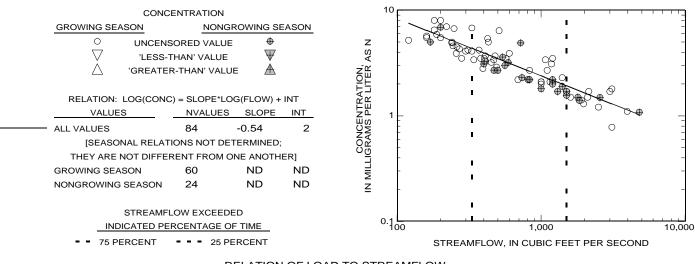
WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	100,000
	10,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000 - 1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	100 10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		0.0	
LOW FLOW HIGH FLOW	_		
○ UNCENSORED VALUE	A N N	4.0	_
√ 'LESS-THAN' VALUE Ψ	-,γ. Α		0
	ΘË		•
	¥X □	3.0	_
TRENDS IN CONCENTRATION	NTRA		
VALUES NVALUES NWYS SLOPE	Ä.S		
LOW FLOW 44 13 ND	ΝÃΑ	2.0	
HIGH FLOW 34 12 ND	00		l g & d
	CONCE IN MILLIGRAMS		
	Ξ	1.0	
	≥		⊕ ⊕ ⊕ ⊕ ⊕ ⊕
		0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
			10 11 10 13 00 01 02 03 04 03 00 01 00 03 90 91 92 93

WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN
01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

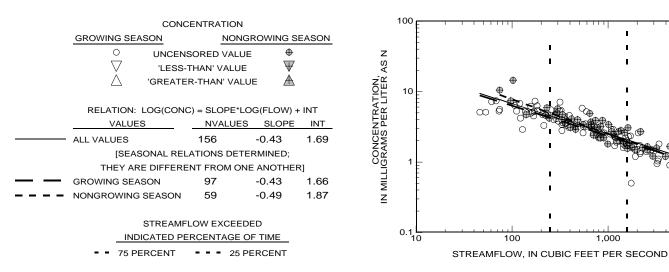
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		100,000			3
imes UNCENSORED VALUE VLESS-THAN' VALUE	>	- - -	1	I	-
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE	INT H	-	. × × ××	× × ×	_
ALL VALUES 84 0.46	2.73	10,000	X	※	_
SMOOTHED RELATION BETWEEN LOAD AND FL	ow 0			1	-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u>=</u>	- / *	× .		-
STREAMFLOW EXCEEDED	LOA	l ×	i	•	-
INDICATED PERCENTAGE OF TIME		-			-
75 PERCENT 25 PERCENT			Ī	Ī	
		1,000	1,000	10,0)00
		STI	REAMFLOW, IN CUBIC FE	EET PER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE ♥ VLESS-THAN' VALUE	Z S 8 8 -	- 0
	ION, TER,	009
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	CONCENTRAT GRAMS PER LI 7	- %
LOW FLOW 23 6 ND	ON 4	
HIGH FLOW 17 4 ND	Ť l	0
	ИW 2- И	

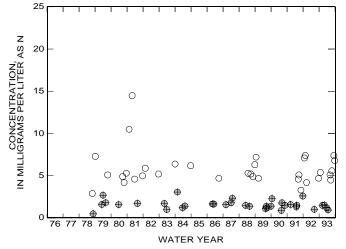

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

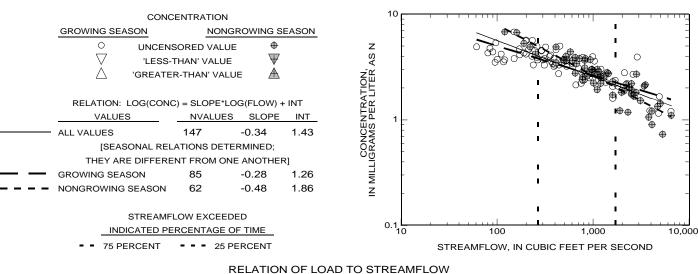


RELATION OF LOAD TO STREAMFLOW

LOAD		100,000	- 		
× UNCENSORED VALUE		F		1	
V 'LESS-THAN' VALUE	>	-		ı	·
RELATION: LOG(LOAD) = SLOPE*LOG(FLOV) (V) + INT	۲. چ ا		I ,,	
VALUES NVALUES SLOPE		<u> </u>		ı	*** ^ -
ALL VALUES 156 0.57	2.42	2		× ***	6 ××
	2	10,000			_
SMOOTHED RELATION BETWEEN LOAD AND F	LOW	2 -	×		_ =
(SHOWN IF THERE ARE 10 OR MORE VALUES)	3			** ******	× -
	2	j	×	$\times_{\mathbf{I}}$	-
STREAMFLOW EXCEEDED	Č	}		I	-
INDICATED PERCENTAGE OF TIME	_	-	<i>1</i> × ×		-
75 PERCENT 25 PERCENT	Г		×	i	1
		1,000	100	1,000	10,000
			STREAMFLOW, IN	CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION		
LOW FLOW			HIGH FLOW	
Ο υ	NCENSORE	D VALUE	⊕	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GF	REATER-THA	N' VALUE	■ ▲	
TREN	DS IN CONC	ENTRAT	ION	
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	34	13	0	
HIGH FLOW	35	14	0	



10,000

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

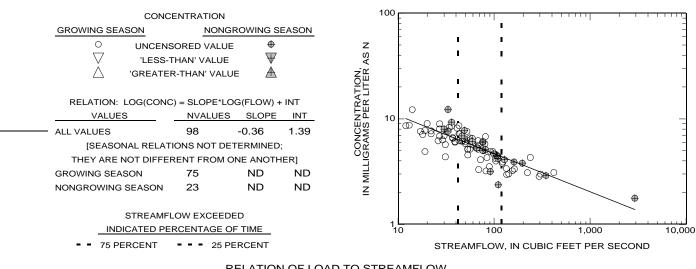
RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	>	100,000		: :	X	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + VALUES NVALUES SLOPE ALL VALUES 147 0.66	INT	10,000 —			××	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	w N POU	10,000	× ×,			
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	LOAI	-		1	-	
		1,000	100 STREAMFLOW, II	1,000 N CUBIC FEET PER		Ю

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	١		10	- 1	ı	1 1	1 1	- 1	- 1	1 1	1	1 1	ı	
LOW FLOW	HIGH FLOW	_												
 UNCENSORED VAL 		Z 0	8 -	_										
LESS-THAN' VALU	JE Ā	₹ 7												
△ 'GREATER-THAN' VA	LUE A	ATION, LITER				0	0							
TRENDS IN CONCENTE	ATION	CONCENTRAT IN MILLIGRAMS PER L	6	_		8					0			
VALUES NVALUES NWY	'S SLOPE	SEN			0		8			95				
LOW FLOW 31 12	ND	AN	4	_	Sp.	00	0 0	0		0		Φ _		
HIGH FLOW 34 14	0	28			8	_	O		0			♥ ⊗		
		⊒				\oplus			\oplus					
		Σ	2	*	+ +	P P	Φ ⊕	⊕	⊕		⊕		đ	
		=	6	•	⊕ 🗱			+	⊕ [™]				Ψ	•

10 -


0 0

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

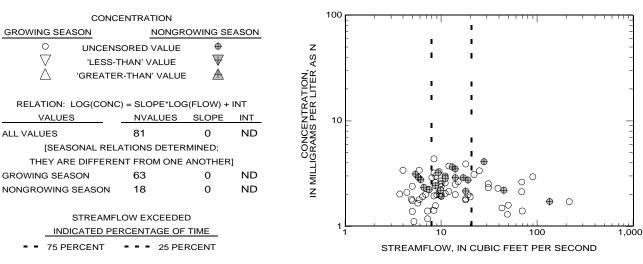
APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 98 0.64 2.12	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE	Z の 20	
√ 'LESS-THAN' VALUE ₩	⋖	~
	O.H.	
	Ĕ5 15	5 –
TRENDS IN CONCENTRATION	75 I	3 <u> </u>
VALUES NVALUES NWYS SLOPE	CONCENTRATION, IGRAMS PER LITER, 01	0 0
LOW FLOW 29 13 ND	25 20 10	
HIGH FLOW 17 11 ND	Öğ 10	-
HIGH FLOW II II IND		
	⊒ ∑ Z	000000000000000000000000000000000000000
	≥ 5 Z	
	=	Φ Φ Φ Φ Φ Φ
		⊕

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

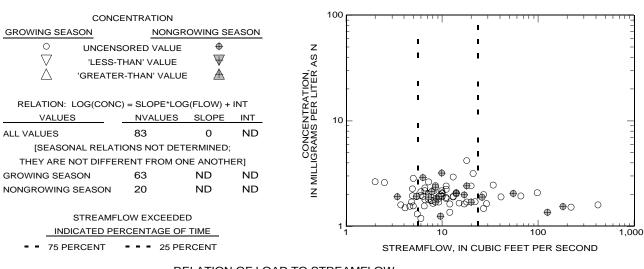
APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN
01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD NCENSORED \ LESS-THAN' V			Α	10,000	1 1		×
RELATION: LOG(LOA VALUES	NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D,	1,000	1		
ALL VALUES	81	0.98	1.12	JNDS	Ē	·	XXXX]
- SMOOTHED RELATION E	BETWEEN LOA	D AND FLC	W	POI	-			-
(SHOWN IF THERE ARE	10 OR MORE V	ALUES)		Ž Ć	100		Ī	
STREAM	FLOW EXCEE	DED		-OAI	Ē		1	=
INDICATED F	ERCENTAGE (OF TIME		_	-	^`&	ı	-
75 PERCENT	25 F	PERCENT			-	ı	ı	-
					10	10	100	1,000
						STREAMFLOW,	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			5.0						1	1 1	- 1	1			- 1	
LOW FLOW			HIGH FLOW	z														
	NCENSOREI LESS-THAN'		₩	A AS	4.0	_				4	→							_
△ 'GF	REATER-THA	N' VALUE	■ ▲	SE SE SE SE SE SE SE SE SE SE SE SE SE S				Œ	D		#	+						
TREN	IDS IN CONC	ENTRAT	ION	CONCENTRATION. GRAMS PER LITER	3.0	_		⊕	0					⊕	○		(_
VALUES	NVALUES	NWYS	SLOPE	NEN.				⊕		0	⊕	0	,			4	Φ	00
LOW FLOW	21	10	ND	ONG	2.0	-		⊕ [©]	9	b		Õ	. 0	⊕	0		•	Ŭ -
HIGH FLOW	16	11	ND					₩,	´			0	. 0		О Ф		0	0
				W N	1.0	_									0	⊕		<u>C</u>
				₹														
					0.0													
						16 /	78	79 80	81	82 8	3 84	85	გი გ	37 88	889	90	91 9	12 93

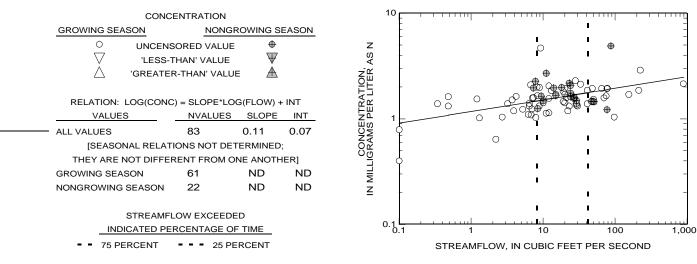
WATER YEAR

APPENDIX 11. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITROGEN 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD	10,000
× UNCENSORED VALUE	
V 'LESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	<u></u>
VALUES NVALUES SLOPE INT	1,000
ALL VALUES 83 0.97 1.06	
— SMOOTHED RELATION BETWEEN LOAD AND FLOW	~
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z 100 -
STREAMFLOW EXCEEDED (5 ***
INDICATED PERCENTAGE OF TIME	
75 PERCENT 25 PERCENT	
	10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW	_	
○ UNCENSORED VALUE ⊕	Ζ ග 4.0 ◀	
√ 'LESS-THAN' VALUE √		
riangle 'GREATER-THAN' VALUE $ riangle$	SH SH	
	₩ 3.0	_
TRENDS IN CONCENTRATION	ÄÄ	O
VALUES NVALUES NWYS SLOPE	CONCENTRATION. 10 CONCENTRATION. 10 CONCENTRATION. 10 CONCENTRATION. 10 CONCENTRATION. 10 CONCENTRATION.	Φ
LOW FLOW 14 9 ND	ZZ 2.0	
HIGH FLOW 13 11 ND	98	
	∃	
	I.0	-
	₹	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
		10 11 10 19 00 01 02 03 04 03 00 01 00 09 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

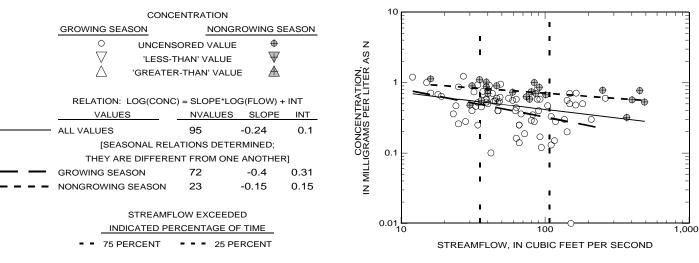
RELATION OF LOAD TO STREAMFLOW

$\overline{\hspace{1cm}}^{\times}$	LOAD UNCENSORED V			>	100,000	 		1 1	
RELATION: LOC VALUES - ALL VALUES	G(LOAD) = SLOPE*LC NVALUES 83	SLOPE 1.11	+ INT INT 0.8	JUNDS PER DA	1000			, ×	111
 (SHOWN IF THERE	ION BETWEEN LOAI ARE 10 OR MORE V	ALUES)	ow.	AD, IN PC	10	XXXXX		1 1 1	- - - - - -
	REAMFLOW EXCEED FED PERCENTAGE C ENT 25 P			ΓO	0.1	1	 	1 1 100	1,000
						STREAMF	LOW, IN CUBIC	FEET PER SEC	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		0.0	
LOW FLOW HIGH FLOW	_		
○ UNCENSORED VALUE ⊕	AS N	4.0	_
∵ 'LESS-THAN' VALUE ₩			
$ riangle$ 'GREATER-THAN' VALUE $ extcal{A}$	ION, TER		
	Ϋ́	3.0	
TRENDS IN CONCENTRATION	CONCENTRAIN MILLIGRAMS PER		Ψ
VALUES NVALUES NWYS SLOPE	13 13 13		0 *
LOW FLOW 26 13 ND	ΣŠ	2.0	
HIGH FLOW 17 10 ND	9 8 8		#
	∃		
	Σ	1.0	- ° ° ° ° ° d • ° − 1
	≥		0 0
			0
		0.0	
			76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR


Appendix 12 Total nitrate plus nitrite

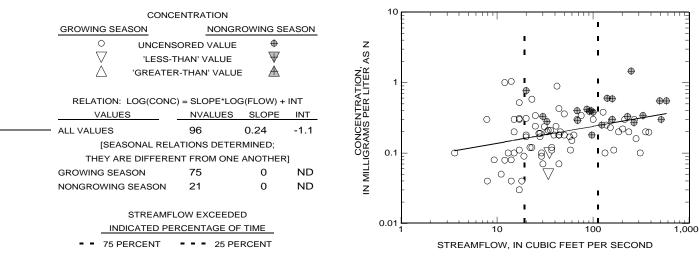
Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD		10,000	1 1	· · · · · · · · · · · · · · · · · · ·	1 1 1	
X UNCENSORED VALUE		Ė	1			=
LESS-THAN' VALUE	>	-	ī	i		×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) VALUES NVALUES SLOPE	INT G	1,000	I J,			
ALL VALUES 95 0.76	0.83 💆		××		$\stackrel{\longleftarrow}{\sim}$	-
SMOOTHED RELATION BETWEEN LOAD AND FLO (SHOWN IF THERE ARE 10 OR MORE VALUES)	DW WOUN	100		× × ·	Χ.	
STREAMFLOW EXCEEDED	OA	10	:	•	×	=
INDICATED PERCENTAGE OF TIME	_	Ė	•	ī		=
75 PERCENT 25 PERCENT		-	1	I		1
		10		100		1,000
			STREAMF	LOW, IN CUBIC	FEET PER SEC	DND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION				' '	' '	' '	1 1			' '	'	'
LOW FLOW	HIGH FLOW	_										
 UNCENSORED VALUE 	+	AS N	2.0	_								_
√ 'LESS-THAN' VALUE	$\overline{\Psi}$	- 1	2.0									
△ 'GREATER-THAN' VALU	E A	ΝË										
		₽5	1.5	_								
TRENDS IN CONCENTRAT	ION	ξÄ	0									
VALUES NVALUES NWYS	SLOPE	N N				0	0	_				
LOW FLOW 21 10	ND	CONCENTRATION, IGRAMS PER LITER	1.0	_		0		O				_
HIGH FLOW 20 10	ND	88 8		0		0 ~		0				
		Ä		•	Ð	0		8 9)	⊕		
		N MILL	0.5	_			+ ,	⊕	⊕	\$	~ 0	
		Z		⊕			0	0.	Ψ		0 (ص کر
				Ψ		Φ (Ψ ⊕	#	,	⊕	0	9
			0.0			₩			()			
			0.0	76 77 7	8 79	80 81	82 83 8	4 85 86	87 88	89 90	91 92	93

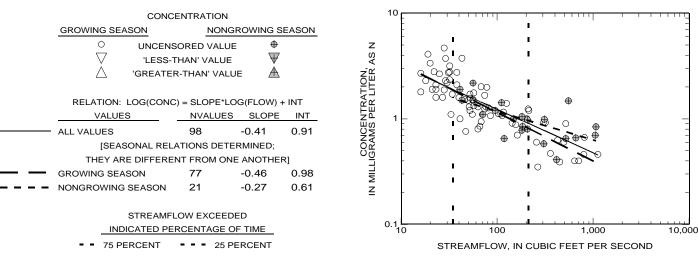
WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

					10,000 -				
	LOAD				F			' .	
×	UNCENSORED V	ALUE			F			•	
∇	'LESS-THAN' VA	LUE					•	. ×	~
				Α̈́	1,000		•	• /`	×^
RELATION: LOG	(LOAD) = SLOPE*LC	G(FLOW)	+ INT	~	1,000		_	- >/	
VALUES	NVALUES	SLOPE	INT	PEF	F		1	'× 💉	×
- ALL VALUES	96	1.24	-0.37	DS F	Ē		' ×	**	
ALL VALUES	90	1.24	-0.37	Z	100		~		X
				20	100	×	× × × × ×	* × × ^ _	
 SMOOTHED RELATI	ON BETWEEN LOAD	AND FLC	ΟW	ď	-		_XLX XX	<u> </u>	
(SHOWN IF THERE A	ARE 10 OR MORE VA	ALUES)		Z	<u> </u>			× ,	
				Ó,		×	×**×		
STR	EAMFLOW EXCEED	ED		Ŏ.	10	^_	$\nearrow \nearrow$		
INDICAT	ED PERCENTAGE O	F TIME		_	Ē	$/\!\!\!/_{\!$	× •		
- 75 PERCE	NT 25 P	ERCENT			-	/ X	×× <u>`</u>	•	
701 2102	2011	_INOLINI			Ţ	* × ,			
					1 <u> </u>	10	<u> </u>	100	1
						STREAMFLOW	IN CUBIC FE	EET PER SECO	ND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	I	2.0	' '	1 1 1	1 1	1 1 1	1 1 1 1	' ' '
LOW FLOW	HIGH FLOW	_						
UNCENSORED VAL	- 0		L					_
'LESS-THAN' VALU	E \$\frac{1}{2} \text{2}							
		_						
	ΑΑ Ε	1.5	H			⊕		_
TRENDS IN CONCENTR	ATION FL	_						
VALUES NVALUES NWY	S SLOPE UV	5						
LOW FLOW 21 12	ND Ž	1.0	-	0			0	_
HIGH FLOW 26 14	0 8	2						
	ATION HELD S SLOPE ND NV O OO		4	• •	⊕		. •	
	2	0.5	[Ψ	.		•	=
	_		Φ,	₽	* O (⊕
		0.0	8)	´, ♥ q	₽ 9 €	, , , ,
		5.0	76 77 7	8 79 80	81 82 83	84 85 8	6 87 88 89 90	91 92 93

WATER YEAR

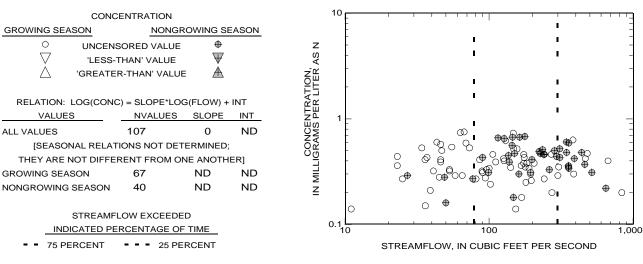
APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE >	10,000 × × ×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 98 0.59 1.64	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

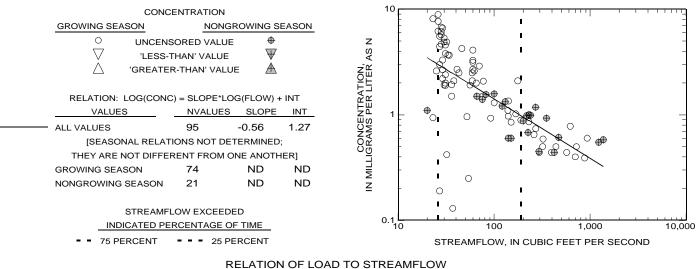
CONCENTRATION		
LOW FLOW HIGH FLOW		Ţ
	Z 20 4.0 4 4 11 1	0
TRENDS IN CONCENTRATION	7 7 7	0000
LOW FLOW 23 13 ND HIGH FLOW 23 13 0		-
	1.0 ·	

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


×	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE		>	10,000	1		
ALL VALUES — SMOOTHED RELATION	DAD) = SLOPE*LOG(FLOW) NVALUES SLOPE 107 1.06 BETWEEN LOAD AND FLOE 10 OR MORE VALUES)	0.19	IN POUNDS PER DAY	1,000		1	***
	MFLOW EXCEEDED PERCENTAGE OF TIME 25 PERCENT		LOAD	10	I I 100 STREAMFLOW, IN CUBIC	I I I FEET PER SECO	1,000 ND

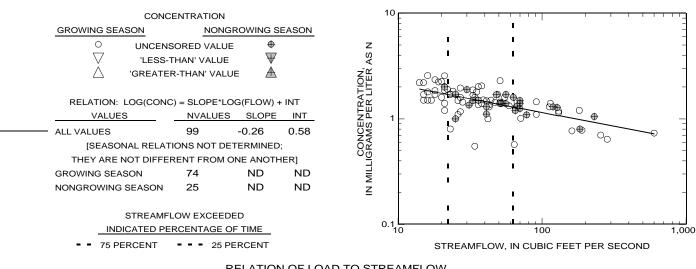
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			1.0		1	I	1 1	ı	ı	1	1	1 1	ı	ı	1	1	
LOW FLOW			HIGH FLOW	_															
). ,	NCENSOREI LESS-THAN' REATER-THA	VALUE	⊕ ₩ ± A	ION, TER AS N	0.8	_										0	C)	-
TREN	DS IN CONC	ENTRAT	ION	NTRATION, PER LITER	0.6	_	0		Ф Ф		0		⊕	0	∌⊖		()	_
VALUES	NVALUES	NWYS	SLOPE	Äα Ng			_ ⊕		₩	Ф ()		\oplus				,	,	
LOW FLOW	29	14	0	NA NA NA	0.4	_	O			0		8	₩(O		\oplus			Φ-
HIGH FLOW	21	11	ND	CONCER	1	₽ ⊕		0	00	(A)	⊕		8	Ψ				○ •	Φ
				N M F	0.2	_	⊕		∞	Ψ	⊕		0						_
				_	0.0			1			1		ı	1 1	1	1	1	ı	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	H 1,000
ALL VALUES 95 0.44 2 — SMOOTHED RELATION BETWEEN LOAD AND FLOW	O C C C C C C C C C C C C C C C C C C C
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u>z</u> 100 ×
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	ğ [
731 ENOEM 231 ENOEM	10,000
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

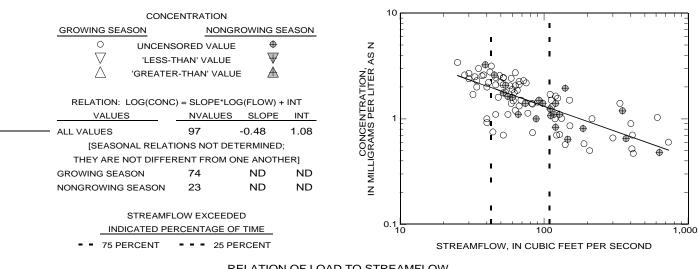
CONCENTRATION		. •	'	ı		'	1		'				' '	'	'	1 1	1
LOW FLOW HIGH FLOW	_														(
O UNCENSORED VALUE ♥ VILESS-THAN' VALUE ▼ OREATER-THAN' VALUE	ON, TER AS N	8	_								С)				7	2
TRENDS IN CONCENTRATION	TRAT ER LI	6	_								(С				-	-
VALUES NVALUES NWYS SLOPE	S E																
LOW FLOW 7 6 ND	AN	4	_													_	
HIGH FLOW 26 12 ND	OS GR																
	CONCENTRATION, IN MILLIGRAMS PER LITER	2						С)							-	
	4	•	•			₽	•	₩.	O	8	⊕		⊕	+		•	٠
		0	76 7	7 78	79 8	0 81	82	83	84	85	86	87	88	89 9	91	92 93	3

WATER YEAR

10 -

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD X UNCENSORED VALUE		10,000	 	1 1	1 1 1 1	
VLESS-THAN' VALUE	DAY	-	i			×]
RELATION: $LOG(LOAD) = SLOPE*LOG(FLOW) + II$	NT 🖭	1,000	i	1	X	
VALUES NVALUES SLOPE I	PE TN	1,000	ī	V 1 X	× ^^	∃ .
ALL VALUES 99 0.74	1.31	F	-		`	1
— SMOOTHED RELATION BETWEEN LOAD AND FLOW	POU	F		ř		-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z Ć	100	× × ×	1		=
STREAMFLOW EXCEEDED	LOA	Ē	I I	I		=
INDICATED PERCENTAGE OF TIME	_	-		Ī		-
75 PERCENT 25 PERCENT		-	1	1		-
		10	<u> </u>	100		1,000
			STREAMFLO	W, IN CUBIC FEE	T PER SECOND	ı

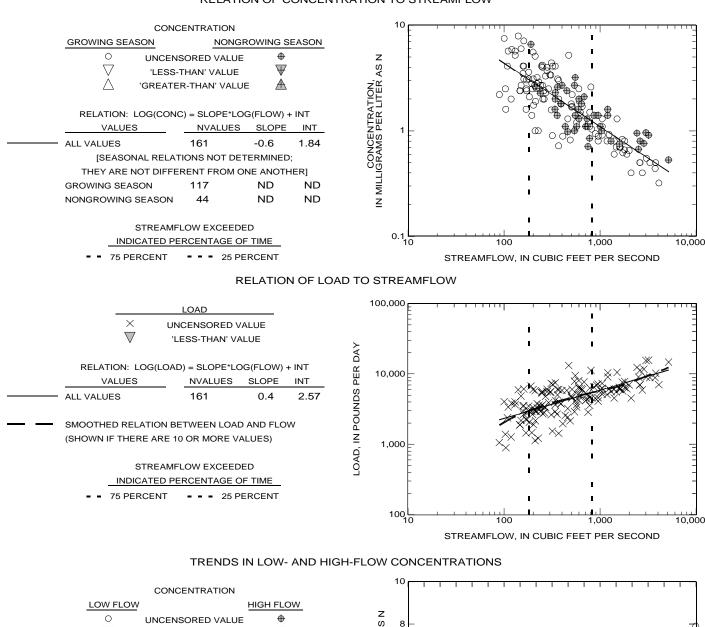
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

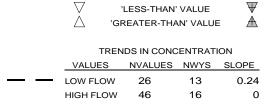
	CONCENTRA	NOITA			1 '		•			•					
LOW FLOW			HIGH FLOW												
, ,	NCENSORED LESS-THAN' REATER-THAI	VALUE		ION, TER AS N	4.0 —										_
				¥7 3	3.0 —										_
TREN	IDS IN CONCI	ENTRAT	ION	NTR/ PER							O				
VALUES	NVALUES	NWYS	SLOPE	SE				_		_ '	w 0				
LOW FLOW	21	11	ND	CONCEI GRAMS	2.0 —			0 0) _	0		_	_
HIGH FLOW	29	15	0	00 08		\circ		°	0		O	O		0	
						1	+		00		 ⊕	Φ,	⊕ ⊕		⊕
				⊒ W 1	1.0	0	•	f		⊕⊕ €	• • •	•	*		Ф_
				Z					4	P	4	•			
					₩					Ψ					

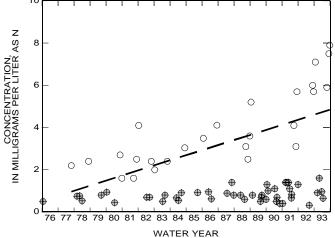
0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


		LOAD			1	0,000	1 1	 	1 1	<u> </u>
	×	UNCENSORED V				Ė		1	İ	3
	V	'LESS-THAN' VA	LUE		Α	-		1	Ì	× -
RE	LATION: LOG	G(LOAD) = SLOPE*LC	G(FLOW)	+ INT	PER D	-		1	ı	* _x _
	VALUES	NVALUES	SLOPE	INT	_	T T			l	
ALL VA	ALUES	97	0.52	1.81	DS			-	X	
					S	1,000		×× ×	※ ^//	< * -
<u> —</u> sмоо	THED RELATI	ION BETWEEN LOAD	AND FLO	OW	Õ	-	,	XXXXX X		=
(SHOV	VN IF THERE	ARE 10 OR MORE VA	ALUES)		Ž	-	×		$\times \times$	
					Ď,	-		*****	'××`	-
	STR	EAMFLOW EXCEED	ED		OA	-	×	\times \times \times		-
	INDICAT	ED PERCENTAGE C	F TIME		_	-		×.×	•	_
_	75 PERCE	ENT = = 25 P	ERCENT					′×^	· 1	
						100			I , ,	
						100		100		1,000
							STREAMF	LOW, IN CUBI	C FEET PER S	SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	
LOW FLOW HIGH FLOW	
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ ○ 'GREATER-THAN' VALUE ★	Σ
TRENDS IN CONCENTRATION	3.0 - O O O O
VALUES NVALUES NWYS SLOPE	
LOW FLOW 17 10 ND	ON
HIGH FLOW 35 14 0	
	1.0

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

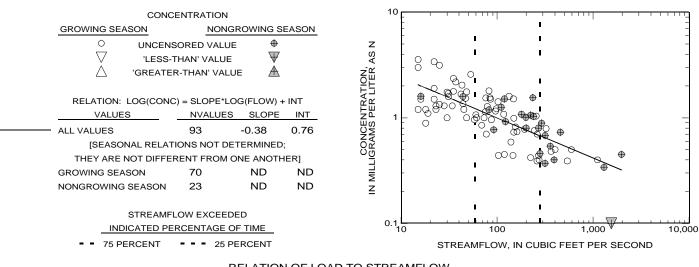
RELATION OF CONCENTRATION TO STREAMFLOW

CONCE	ENTRATION				10 E		 	 		
GROWING SEASON	NONGR	OWING S	EASON		Ē				ı	=
O UNCENS	ORED VALUE		<u>.</u>	z	t				1	
√ 'LESS-T	HAN' VALUE	\forall		AS	1			•	1	
△ 'GREATER	r-THAN' VALUE	A		TON,	1 _		0	• • •		-
RELATION: LOG(CONC)) = SLOPE*LOG	G(FLOW) +	- INT	FA FA	ŧ	0			1	=
VALUES	NVALUES	SLOPE	INT	눌胐	ţ			######################################	.₩	_
ALL VALUES	90	0	ND	CONCE	-		• •		, •	O⊕
[SEASONAL RELA	TIONS DETER	MINED;		Šδ			00		0	0
THEY ARE DIFFEREN	NT FROM ONE	ANOTHER	R]	00	0.1		0 8	R A O	. •	
GROWING SEASON	54	0	ND	Ī	Ŧ	∇	& ₩	$\triangle \Delta \Delta \infty$	•	=
NONGROWING SEASON	36	0	ND	Z	Ī	v	•	* *0	1	=
STREAMFL	OW EXCEEDE	D			Ī	1	1	1	1	_
INDICATED PER	RCENTAGE OF	TIME			0.01	0.1	1	10	100	1,000
75 PERCENT	25 PE	RCENT				STREAM	MFLOW, IN CUI	BIC FEET PE	R SECON	۷D
				D TO O	TDE 4 1 45	-1 -014/				

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES	0 100 H
ALL VALUES 90 1.1 -0.12 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	SOUNDO A TO THE TOTAL PROPERTY OF THE TOTAL
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	0.01 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
	0.001 0.1 1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


C	CONCENTR	ATION			0.5		-	-	_			-	1	1	1				Т	-	
LOW FLOW			HIGH FLOV																		
O UN	CENSORE	VALUE	+		0.4	L															_
, ,	ESS-THAN'		$\overline{\Psi}$																		
△ 'GRE	EATER-THA	.N' VALUE	■ ▲	[]			•	₽													
TDENIC	S IN CONC	ENTRAT	ION	RA-	0.3	-					\oplus										-
	NVALUES	NWYS	SLOPE	FIR					⊕												⊕
LOW FLOW	0	0	ND	CONCENTRATION,	0.2	L			Ψ		4	,									
HIGH FLOW	9	6	ND	CO SR/S	0.2			+													
				Ĕ								•									
				Ξ	0.1	—			0		•	₽									_
				≥																	
					0.0	76	77 7	78 7	9 80	81	82 8	3 84	85	86	87	88	89	90	91	92	93

WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

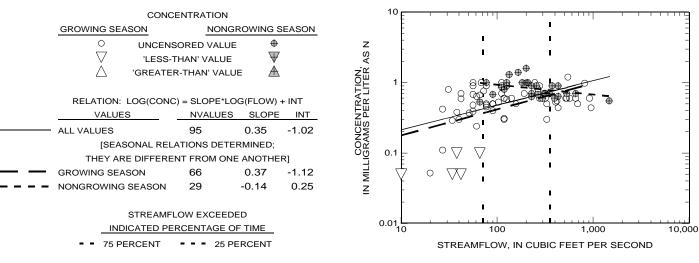
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

×	LOAD JNCENSORED \ 'LESS-THAN' V			γĄ	10,000		 		×	
RELATION: LOG(LO VALUES	AD) = SLOPE*LO NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D	1,000	, X	· ××××		∇	
ALL VALUES	93	0.62	1.49	NDS	Ē	××				=
SMOOTHED RELATION (SHOWN IF THERE ARE			W	, IN POL	100		l	1 1		-
	MFLOW EXCEED			LOAD	-	· ^ · · · · · · · · · · · · · · · · · ·	! !	1		= = = = = = = = = = = = = = = = = = = =
75 PERCENT	= = 2 5 F	PERCENT			10		I L	I	1,000	10,000
								N CUBIC FEE		

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION	
LOW FLOW HIGH FLOW	_
○ UNCENSORED VALUE ⊕	Z Ø 4.0 –
Control of the Contro	
riangle 'GREATER-THAN' VALUE $ riangle$	으쁜 ○
	IN MILLIGRAMS PER LIT
TRENDS IN CONCENTRATION	ΨΨ FQ O
VALUES NVALUES NWYS SLOPE	
LOW FLOW 33 15 0	2.0 - O
HIGH FLOW 14 9 ND	
	1.0
	Ψ Ψ .
	0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

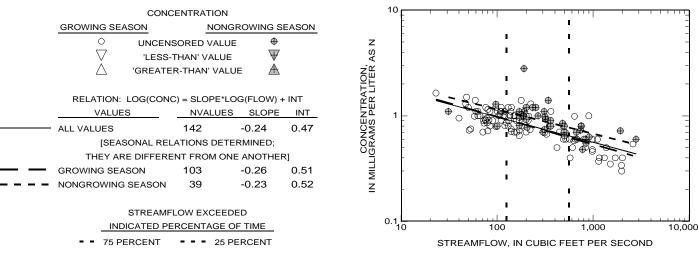
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000 × × × × × × × × × × × × × × × × ×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	Y 1,000 X X X X X X X X X X X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	NO NI ON NI
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 1000 1,000 10,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			
LOW FLOW			HIGH FLOW		
, ,	NCENSORE 'LESS-THAN' REATER-TH <i>A</i>	VALUE	→→→A	N 2.0	
TREN	IDS IN CONC	ENTRAT	ION	TRAT 1.5 L	5 — —
VALUES	NVALUES	NWYS	SLOPE	Äα Σπ	⊕
LOW FLOW	25	7	ND	COONCE GRAMS	0 - 0 ⊕ -
HIGH FLOW	19	6	ND	OS GR	


0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 142 0.76 1.2	IDS PER DA
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000 L
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT - 25 PERCENT	9
	100 100 1,000 10 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	
LOW FLOW HIGH FLOW	
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE △ 'GREATER-THAN' VALUE ★	Z 94 2.0 – – ZH OLL:
TRENDS IN CONCENTRATION	
VALUES NVALUES NWYS SLOPE	
Low FLow 44 13 ND HIGH FLOW 34 12 ND	1.0 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.5 - + + + + + + + + + + + + + + + + + +
	0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

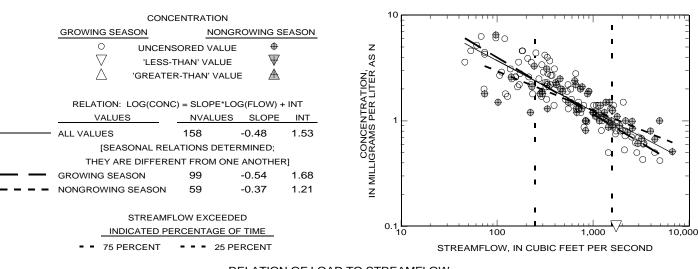
NOME OF A COLUMN A CO	t	O ' I	
ROWING SEASON NONGROWING SE	ASON	-400	
○ UNCENSORED VALUE	z		
	S +	a	
↑ 'GREATER-THAN' VALUE ♠	<i>₹</i> ₽		
	ō# [º		
DELATION: LOC(CONC) CLODE*LOC(FLOM)	NT 52		
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) +	E Ë	* * * * * * *	
VALUES NVALUES SLOPE	INT ZG 1		○ ⊕
L VALUES 84 -0.69	2.2 9 =		
[SEASONAL RELATIONS NOT DETERMINED;	INT 2.2 OOO 1	0	
THEY ARE NOT DIFFERENT FROM ONE ANOTHE	-[7]		0
OWING SEASON 60 ND	ND 🗒		Ŭ
NGROWING SEASON 24 ND	ND Z	•	
	= [ı	
STREAMFLOW EXCEEDED		<u> </u>	
INDICATED PERCENTAGE OF TIME	0.100	1,000	
75 PERCENT 25 PERCENT	100	STREAMFLOW, IN CUBIC FEET	

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000	-
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000 - × × × × × × × × × × × × × × × × ×	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 2		-
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	X	_
	1,000 1,000 10 STREAMELOW IN CUBIC FEET PER SECOND	0,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

C	CONCENTRATION					
LOW FLOW		HIGH FLOW				
,'LE	CENSORED VALUE ESS-THAN' VALUE EATER-THAN' VALUI		ION, TER AS N	8-		
	S IN CONCENTRAT	ION SLOPE	ENTRAT PER LI	6-	0	
LOW FLOW	23 6	ND	ONCE	4 –		6
HIGH FLOW	17 4	ND	CONCE	2-	80	0
			Z			


0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

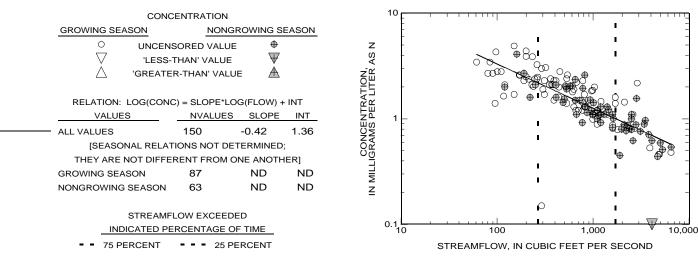
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

$\begin{array}{c} \times \\ \overline{\mathbb{V}} \end{array}$	LOAD UNCENSORED \ 'LESS-THAN' V			≿	100,000		1	1 1 1	× -
RELATION: LOG(I	LOAD) = SLOPE*LO	OG(FLOW) SLOPE	+ INT INT	PER DA	10,000		ı •***		
ALL VALUES	158	0.52	2.27	NDS	E	*	× XXXXX	× × ·	3
SMOOTHED RELATIO	N BETWEEN LOAI	D AND FLO	w	POU	-	×		ı	-
(SHOWN IF THERE A	RE 10 OR MORE V	ALUES)		Ž	1,000	×××	× ×	∇	
STRE	AMFLOW EXCEED	DED		-OAE	<u> </u>	× ^	ı I	I	=
INDICATE	D PERCENTAGE (OF TIME			-			Ī	-
75 PERCEN	NT = = = 25 F	PERCENT			-		ı	ı	-
					100	100)	1,000	10,000
						STREAMFLOV	V, IN CUBIC F	EET PER SECC	OND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATIO	1
LOW FLOW	HIGH FLOW
 UNCENSORED VAL 	UE \oplus
√	JE $\overline{\Psi}$
△ 'GREATER-THAN' VA	LUE 🕭
TRENDS IN CONCENTE	ATION
VALUES NVALUES NW	SLOPE
LOW FLOW 35 13	ND
HIGH FLOW 35 14	ND

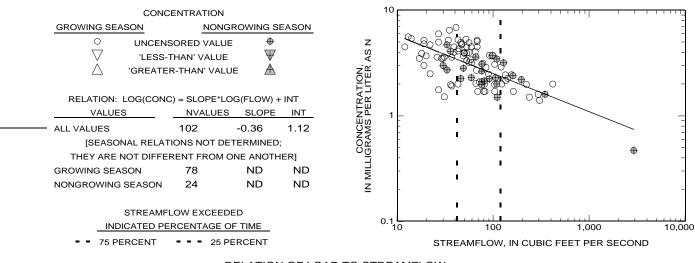
79 80 81 82 83 84 85 86 87 88 89 90 91 WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


$\overline{\mathbb{X}}$	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE	,	100,000			
VALUES ALL VALUES SMOOTHED RELATE	(LOAD) = SLOPE*LOG(FLOW) NVALUES SLOPE 150 0.58 ON BETWEEN LOAD AND FLOARE 10 OR MORE VALUES)	2.09	10,000	×		× V
STR	EAMFLOW EXCEEDED ED PERCENTAGE OF TIME		1,000	X X 100 STREAMFLOW, IN	1 X 1,000	10,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		5.0		T	Ъ	1	1	г т	-	-	T	ı	-	Т	1		\neg
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE Φ ✓ 'LESS-THAN' VALUE Ψ △ 'GREATER-THAN' VALUE Δ	ION, TER AS N	4.0	_		00						0				C		· - 0
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	CONCENTRATION.	3.0			00	8 8	0	Э		∞		+	0			O	
LOW FLOW 31 12 ND HIGH FLOW 34 14 0	CON	2.0	_	0	•	0		0)			Ψ	0		⊕		Ω
	2 <u>Z</u>	1.0	•	⊕ \$ ⊕ \$		+ +	•		⊕			⊕		⊕			•
		0.0	76	77 78		80 81	82	83	84	85 8	86	87 8	38 8	9 9	0 91	92	93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	100,000
× UNCENSORED VALUE VLESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT W L L L L L L L L L	10,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 2	1,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	
	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ▲	CONCENTRATION, GRAMS PER LITER AS N	
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	ENTR S PER	
LOW FLOW 31 14 0 HIGH FLOW 17 11 ND	CONC PRAME	
	W 2	
		+

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

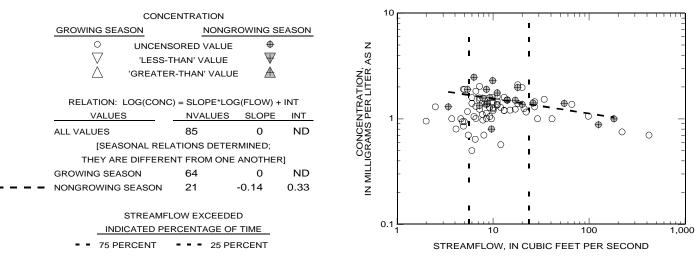
RELATION OF CONCENTRATION TO STREAMFLOW

[SEASONAL RELATIONS DETERMINED; ON DO SEASON 63 0 ND SEASON 63 0 ND SEASON 63 0 ND SEASON 63 0 ND SEASON CONTRACTOR OF THE PROPERTY OF THE PRO	CONCENTRATION		10	
TLESS-THAN' VALUE 'GREATER-THAN' VALUE RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT VALUES NVALUES NVALUES SLOPE INT ALL VALUES SEASONAL RELATIONS DETERMINED; THEY ARE DIFFERENT FROM ONE ANOTHER] GROWING SEASON STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME OUT OUT OUT OUT OUT OUT OUT O	GROWING SEASON NONGRO	WING SEASO	· •	
VALUES NVALUES SLOPE INT ALL VALUES 82 0 ND [SEASONAL RELATIONS DETERMINED; THEY ARE DIFFERENT FROM ONE ANOTHER] GROWING SEASON 63 0 ND NONGROWING SEASON 19 0 ND STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	UNCENSORED VALUE VLESS-THAN' VALUE	<u></u>		
ALL VALUES 82 0 ND OND SEASONAL RELATIONS DETERMINED; STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 150 0.01	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT	A A O O	0
GROWING SEASON 63 0 ND NONGROWING SEASON 19 0 ND STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	VALUES NVALUES	SLOPE INT	ZU I	
GROWING SEASON 63 0 ND NONGROWING SEASON 19 0 ND STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	ALL VALUES 82	0 NE	ΣΣ Πω	
GROWING SEASON 63 0 ND NONGROWING SEASON 19 0 ND STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	[SEASONAL RELATIONS DETERM	MINED;	58	
NONGROWING SEASON 19 0 ND Z STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 0.01	THEY ARE DIFFERENT FROM ONE A	NOTHER]		
NONGROWING SEASON 19 0 ND Z STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 0.01	GROWING SEASON 63	0 NE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
INDICATED PERCENTAGE OF TIME 0.01 1 10 100	NONGROWING SEASON 19	0 NE	Ž	
INDICATED PERCENTAGE OF TIME 0.01 100 100				
INDICATED PERCENTAGE OF TIME 1 10 100	STREAMFLOW EXCEEDED			
75 PERCENT 25 PERCENT STREAMFLOW, IN CUBIC FEET PER SECOND	INDICATED PERCENTAGE OF 1	ГІМЕ	10 100	
	75 PERCENT 25 PER	CENT	STREAMFLOW, IN CUBIC FEET PER S	ECOND

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	
ALL VALUES 82 1 0.89	20 100 X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	
STREAMFLOW EXCEEDED CONTROL CO	
75 PERCENT 25 PERCENT	10 100 1,000
	STREAMELOW IN CUBIC EEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION LOW FLOW HIGH FLOW		5.0	
O UNCENSORED VALUE ♥ VIESS-THAN' VALUE ♥ OGREATER-THAN' VALUE ★	ION, ITER AS N	4.0	_
TREMPO IN CONCENTRATION	RAT	3.0	- ⊕
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	SENTI IS PE		0
LOW FLOW 21 10 ND HIGH FLOW 16 11 ND	CONCENTRATION, IN MILLIGRAMS PER LITER	2.0	
	Z	1.0	
		0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 12. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRATE PLUS NITRITE 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

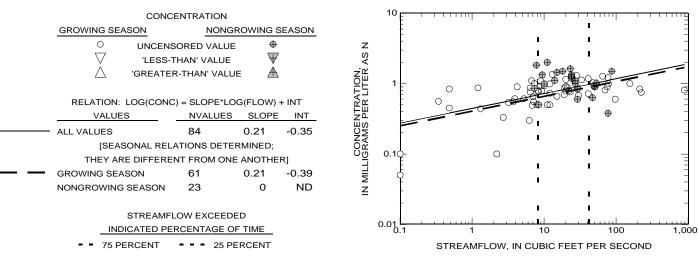
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

$\overline{\mathbb{V}}$	LOAD UNCENSORED VAL 'LESS-THAN' VALU		10,000 E	! !	1 1	
RELATION: LOG((LOAD) = SLOPE*LOG(NVALUES S	FLOW) + INT	1,000		ı	
ALL VALUES		0.96 0.87	NDS	ı		
SMOOTHED RELATION	ON BETWEEN LOAD A	ND FLOW	Pou	1 1		
(SHOWN IF THERE A	RE 10 OR MORE VALU	JES)	Z 100	***		
STRE	EAMFLOW EXCEEDED	•	LOA	× XXX	.	
INDICATE	ED PERCENTAGE OF	TIME	_		I	
75 PERCE	NT = = = 25 PER	CENT	-	/* ****	1	
			10	10	100	<u> </u>
				STREAMFLOW	, IN CUBIC FEET PE	R SECON

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


0

0

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

					2.5						
	CONCENTR	RATION			2.5		Т	1	1	Т	1
LOW FLOW			HIGH FLOW								
Ο υ	NCENSORE	D VALUE	⊕	Z Ø	2.0	L					
▽ ,	LESS-THAN	' VALUE	$\overline{\Psi}$	%; A;	2.0			0			
△ 'GF	REATER-THA	AN' VALUI	e 🛦	S H							
				Ę-	1.5	L					
TREN	IDS IN CONC	CENTRAT	ION	A. T. A.					0	\sim	€
VALUES	NVALUES	NWYS	SLOPE	ΩN					01	U	
LOW FLOW	14	9	ND	AMS	1.0	L		+ +	Ω	_	0
HIGH FLOW	13	11	ND	00 00				* *(<i>y</i>	O	Ŭ
				Ĭ				,)		0
				M	0.5	L					
				Z							

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

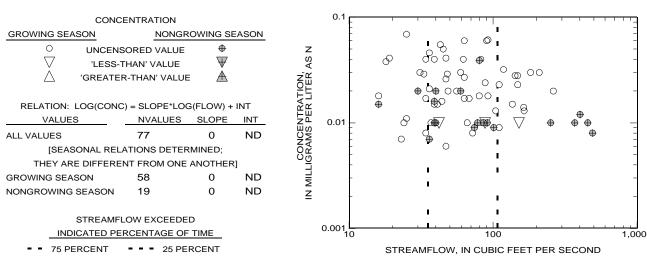
<u></u>	LOAD				10,000		 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
$\overline{\mathbb{X}}$	UNCENSORED V			×	1000			1	 	× =
RELATION: LOG VALUES	(LOAD) = SLOPE*LC NVALUES	OG(FLOW) SLOPE	+ INT INT	ER D	100			1		=
- ALL VALUES	84	1.21	0.38	NDS F	[>		I I	=
 SMOOTHED RELATION	ON BETWEEN LOAD	O AND FLC	ow	Pour	10	× •		× 1 1	ı	
(SHOWN IF THERE A	ARE 10 OR MORE V	ALUES)		Ď,	1		×		1	-
	EAMFLOW EXCEED			LOA	0.1	<i>/</i>		i	•	_
= 75 PERCE		ERCENT			3.1 ×			ı	I I	=
					0.01		1	10	100	1,00
						STREA	MFLOW, IN	CUBIC FEE	T PER SECO	ND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

					2.5											
	CONCENTR	ATION			2.5		1	1	ı	Т	1			- 1	- 1	
LOW FLOW			HIGH FLOW	-												
O U	NCENSORE	D VALUE	⊕	Z Ø V	2.0	_										
\triangle \tag{'}	'LESS-THAN'	VALUE	$\overline{\Psi}$										(0		
△ 'GI	REATER-THA	N' VALUI	■ ▲	TER,										~		
				EAT.	1.5	_			-							
TREN	IDS IN CONC	ENTRAT	ION	NTRA PER					•							
VALUES	NVALUES	NWYS	SLOPE													
LOW FLOW	26	13	ND	CONCE IN MILLIGRAMS	1.0	_		C) (II)	,						. 0
HIGH FLOW	18	11	ND	00 00 00	-				,	\$P	\oplus	0	\oplus		đ	
				Ĭ					(_				Ψ.		Ψ.
				Ξ	0.5	_				_ &	D	0	,	8	0	
				Z					(0		. ~		0	0	

0 0 Q

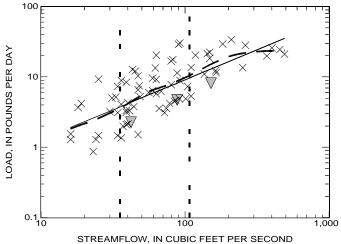
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR


Appendix 13 Total nitrite

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

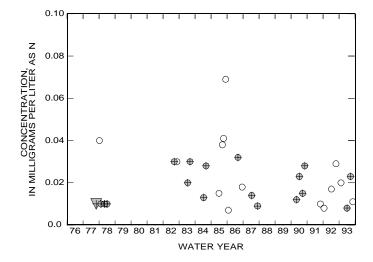
APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

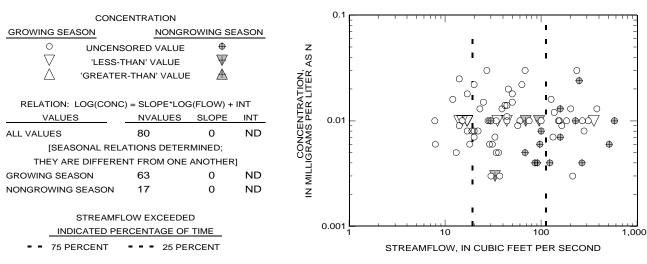
RELATION OF LOAD TO STREAMFLOW

		LOAD				E	
	×	UNCENSORED \	/ALUE			F	ī
	∇	'LESS-THAN' V	ALUE		>	F	I
					Δ	-	
	RELATION: LO	OG(LOAD) = SLOPE*LOCATION = SLOPE*LOCA	OG(FLOW)	+ INT	<u>د</u> 10	<u>, </u>	
	VALUES	NVALUES	SLOPE	INT	Д .	ĺŧ	_ ^ 💥 🤅
	- ALL VALUES	77	0.85	-0.74	DS	E	× ×
					Z S	-	^`
- —	SMOOTHED RELA	ATION BETWEEN LOAI	D AND FLO	W	0	† \$	
	(SHOWN IF THER	E ARE 10 OR MORE V	ALUES)		Z ₁	L ×	. × ×
					Ď,	E	×
	S ⁻	TREAMFLOW EXCEED	DED		o	E	Ī
	INDIC	ATED PERCENTAGE (OF TIME		_	-	


25 PERCENT

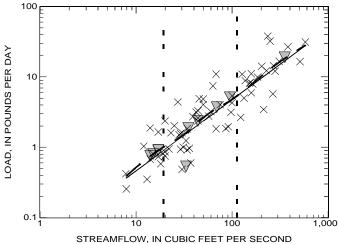
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION									
LOW FLOW			HIGH FLOW						
Ο υ	NCENSORE	D VALUE	⊕						
∇	LESS-THAN'	VALUE	$\overline{\Psi}$						
△ 'GF	REATER-THA	N' VALUE	■ 🛦						
TREN	IDS IN CONC	ENTRAT	ION						
VALUES	NVALUES	NWYS	SLOPE						
LOW FLOW	14	7	ND						
HIGH FLOW	18	9	ND						


75 PERCENT

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

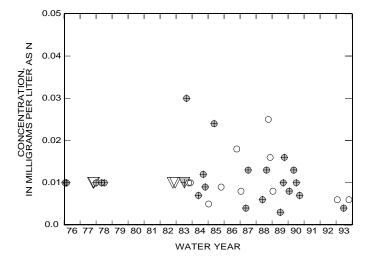
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD				100 E				
	× UNCENSORED VALUE									
	'LESS-THAN' VALUE									
					DAY	-				
RELATIO	N: LOG(LOAD) = SLOPE*LC	G(FLOW)	+ INT		10				
VAL	UES	NVALUES	SLOPE	INT	PER	10				
ALL VALUES	3	80	1.01	-1.34	POUNDS	Ē				
— — SMOOTHED	RELATION BE	TWEEN LOAD	AND FLO	W	POL	F				
(SHOWN IF THERE ARE 10 OR MORE VALUES)										
	STREAMFL	OW EXCEED	ED		OAD	E				
	INDICATED PE	RCENTAGE C	F TIME		_	-				

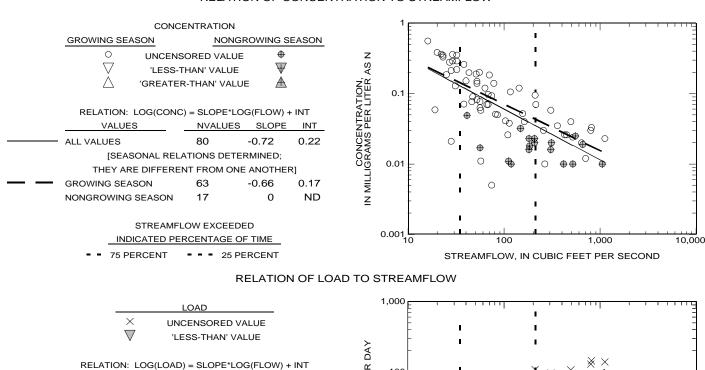
- - 25 PERCENT



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW		
Ο υ	O UNCENSORED VALUE				
∇ ,	√ 'LESS-THAN' VALUE √				
TRENDS IN CONCENTRATION					
VALUES	NVALUES	NWYS	SLOPE		
LOW FLOW	15	9	ND		
HIGH FLOW	23	11	ND		

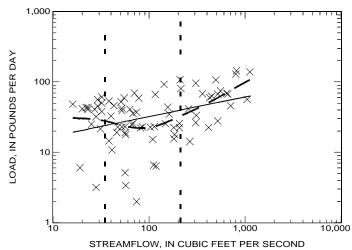
CONCENTRATION


75 PERCENT

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


VALUESNVALUESSLOPEINTALL VALUES800.280.95

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

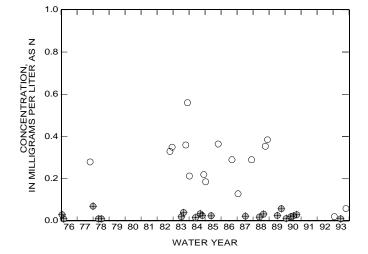
75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION					
LOW FLOW			HIGH FLOW		
0	UNCENSORE	VALUE	⊕		
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$		
)· 🛆	GREATER-THA	N' VALUE	\blacksquare		
TRENDS IN CONCENTRATION					
VALUES	NVALUES	NWYS	SLOPE		

21

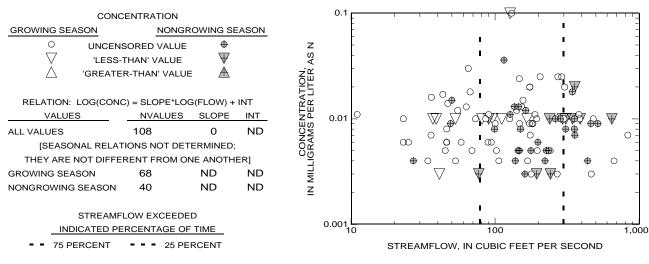
9


11

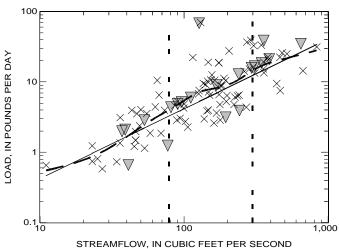
ND

ND

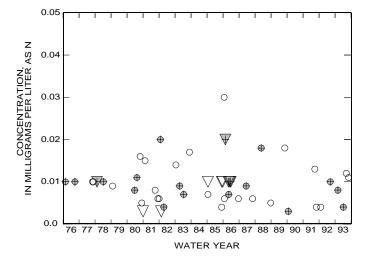
LOW FLOW


HIGH FLOW

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

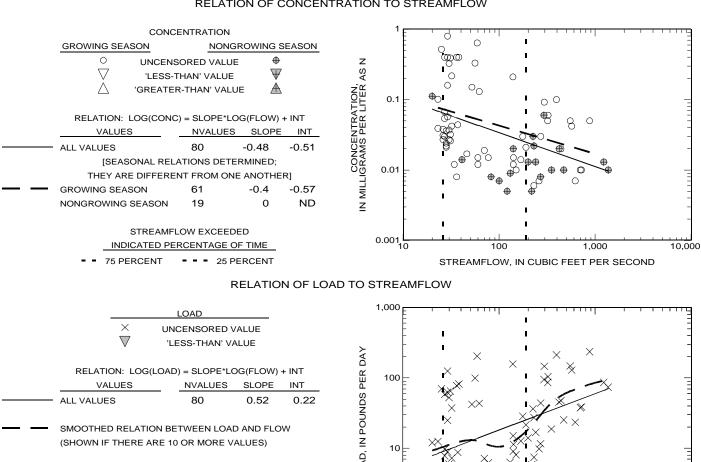

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

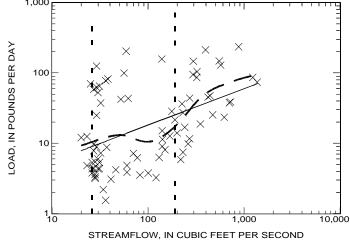

RELATION OF LOAD TO STREAMFLOW

_		LOAD		
		CENSORED V ESS-THAN' V		
	N: LOG(LOAD	•		
VALU		NVALUES	SLOPE	INT
ALL VALUES		108	0.99	-1.36
SMOOTHED I	RELATION BE	TWEEN LOAD	O AND FLO	W
(SHOWN IF T	HERE ARE 10	OR MORE V	ALUES)	
	STREAMFL	OW EXCEED	ED	
<u>IN</u>	NDICATED PE	RCENTAGE C	OF TIME	
 75	PERCENT	25 P	ERCENT	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION					
LOW FLOW			HIGH FLOW		
Ο υ	NCENSORE	O VALUE	⊕		
√ 'LESS-THAN' VALUE √					
riangle 'GREATER-THAN' VALUE $ riangle$					
TRENDS IN CONCENTRATION					
VALUES	NVALUES	NWYS	SLOPE		
LOW FLOW	29	14	0		
HIGH FLOW	21	11	ND		

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

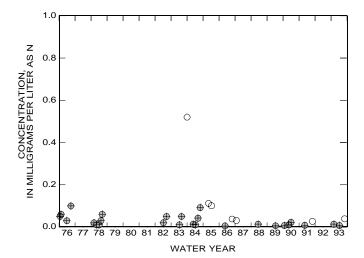

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT

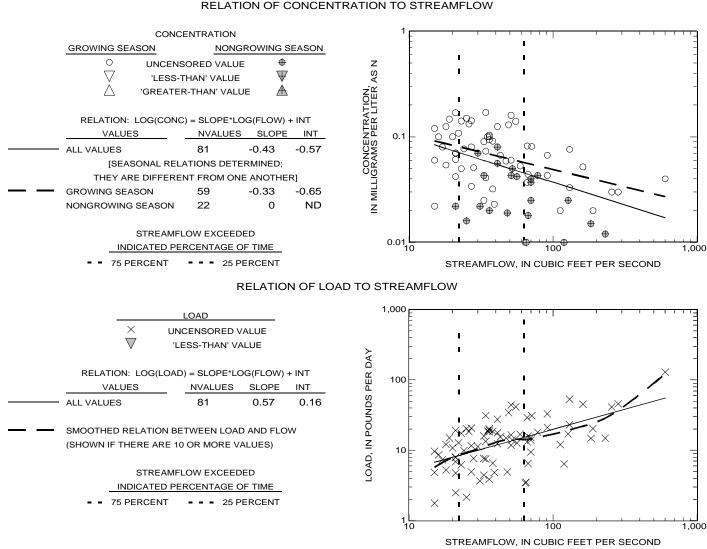
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION						
LOW FLOW			HIGH FLOW			
٥ ر	INCENSOREI	D VALUE	+			
∇	abla 'LESS-THAN' VALUE $ abla$					
△ 'GREATER-THAN' VALUE A A A A B C C C C C C C C C C C C						
TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	7	6	ND			

11

ND

26


HIGH FLOW

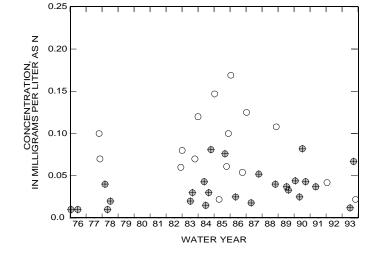
APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

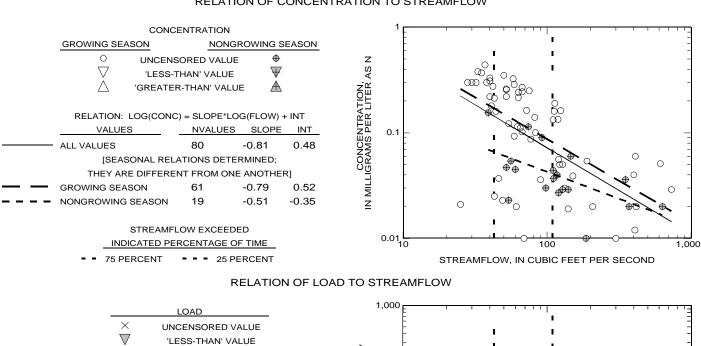
LOW FLOW			HIGH FLOW	
٥ ر	JNCENSOREI	D VALUE	⊕	
∇	√ 'LESS-THAN' VALUE √			
	REATER-THA	N' VALUE	■ 🛦	
TRENDS IN CONCENTRATION				
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	16	9	ND	


12

ND

25

HIGH FLOW

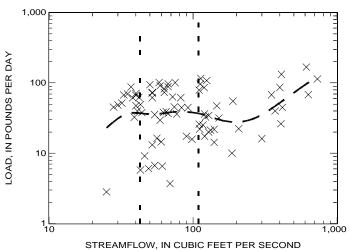

CONCENTRATION

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

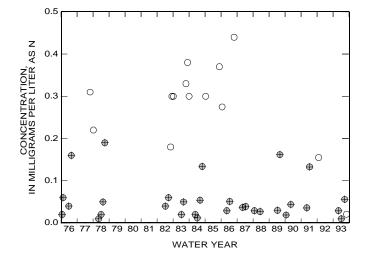

VALUESNVALUESSLOPEINTALL VALUES800ND

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

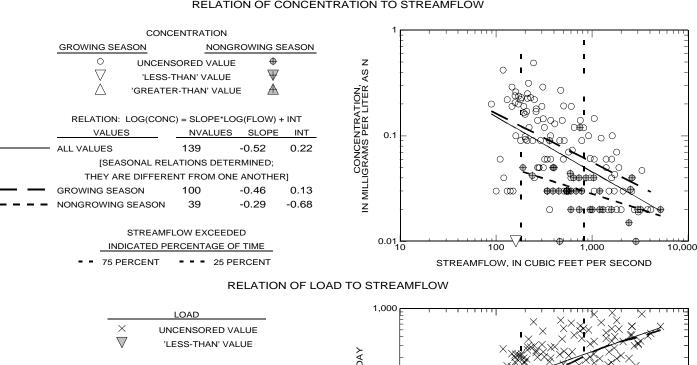
75 PERCENT - 25 PERCENT


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION					
LOW FLOW			HIGH FLOW		
Ο υ	NCENSORE	D VALUE	+		
abla 'LESS-THAN' VALUE $ abla$					
TRENDS IN CONCENTRATION					
VALUES	NVALUES	NWYS	SLOPE		
LOW FLOW	14	8	ND		

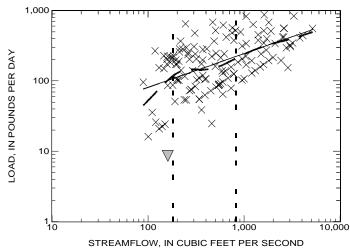
12

ND


HIGH FLOW

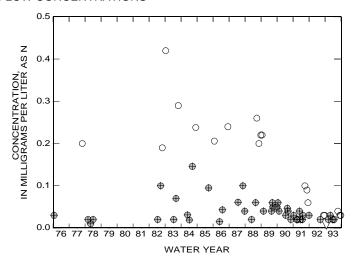
APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

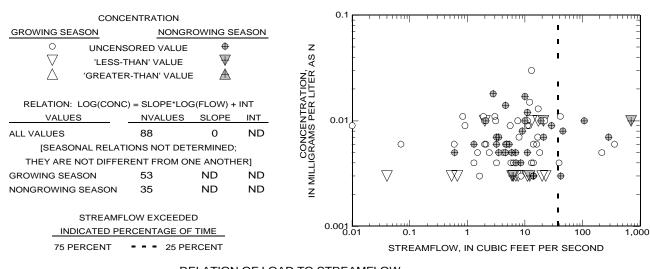
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES SLOPE 139 ALL VALUES

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	+
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle ,	GREATER-THAN' VALU	e 🛦


TRENDS IN CONCENTRATION						
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	20	10	ND			
HIGH FLOW	43	14	ND			

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

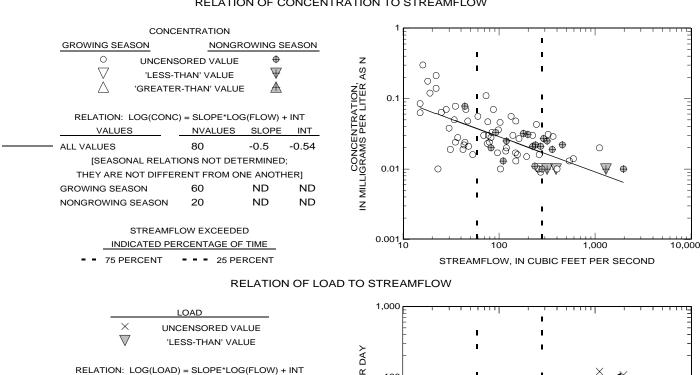
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	D D D D D D D D D D D D D D D D D D D
— ALL VALUES 88 1.02 -1.52 — SMOOTHED RELATION BETWEEN LOAD AND FLOW	ONDO O.1
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z 0.01
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	0.001
	0.0001 0.1 1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONC	ENTRATION											
LOW FLOW		HIGH FLOW	_									
LESS-	ORED VALUE THAN' VALUE R-THAN' VALU	$\overline{\Psi}$	ATION, LITER AS N	0.020	_							_
TRENDS IN	CONCENTRAT	ION	TRAT ER LI	0.015	_							_
VALUES NVAL	UES NWYS	SLOPE	S N									
LOW FLOW 0	0	ND	ANO ANO ANO	0.010	₽	\forall		⊕				_
HIGH FLOW 9	6	ND	9 <u>6</u>			·		⊕				
			CONCENTRAIN MILLIGRAMS PER	0.005	_		+	+				+
			=			\oplus	Ψ					
				0.0	76 77	78 79	80 8	1 82 83 84	85 86 87	88 89 90	91 92	93

WATER YEAR

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

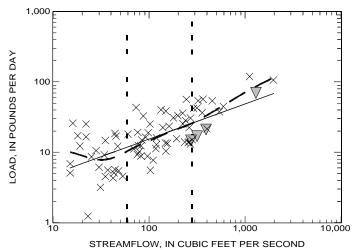
[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

VALUES

LOW FLOW


HIGH FLOW

ALL VALUES

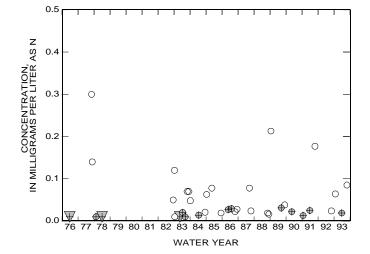
NVALUES

SLOPE

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
0	UNCENSORE	O VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'œ	SREATER-THA	N' VALUE	· A
TRE	NDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE


14

12

9

ND

ND

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

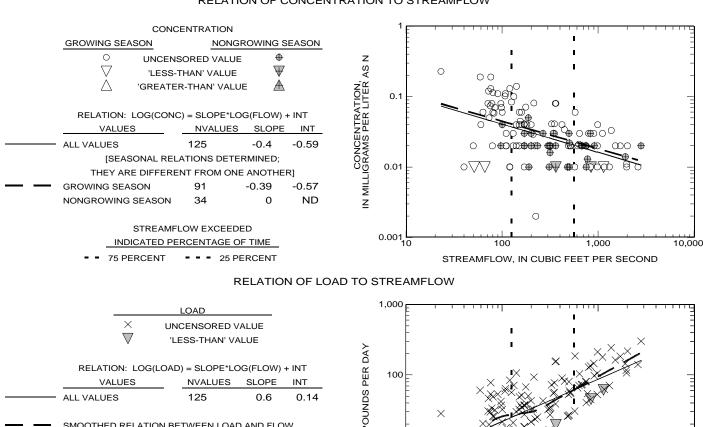
CONC	ENTRATION		
GROWING SEASON	NONGRO	OWING SE	ASON
	SORED VALUE		
	THAN' VALUE	\forall	
^	R-THAN' VALUE	À	
RELATION: LOG(CONC	s) = SLOPE*LOG((FLOW) +	INT
VALUES	NVALUES	SLOPE	INT
ALL VALUES	95	0	ND
[SEASONAL RELAT	IONS NOT DETE	RMINED;	
THEY ARE NOT DIFFER	RENT FROM ONE	E ANOTHI	ER]
GROWING SEASON	66	ND	ND
NONGROWING SEASON	29	ND	ND
	OW EXCEEDED		
= = 75 PERCENT	25 PER	CENT	

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	1,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	100 × × × × × × × × × × × × × × × × × ×
ALL VALUES 95 1.01 -1.01	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	NO NO NO NO NO NO NO NO NO NO NO NO NO N
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	0.1 100 1,000 10,000

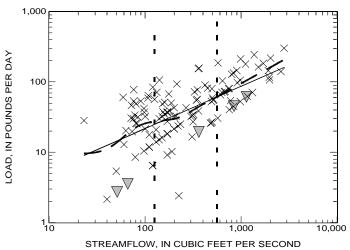
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	0.05	⁰⁵
LOW FLOW HIGH FLO		
○ UNCENSORED VALUE ♥ ○ 'LESS-THAN' VALUE ♥ ○ 'GREATER-THAN' VALUE ♠	- Z % 0.04 - Z V OUL	04 -
	A 0.03	03 - 0 0 0 0 0
TRENDS IN CONCENTRATION	ËË	
VALUES NVALUES NWYS SLOPE	ASE	
LOW FLOW 25 7 ND	ŽĘ 0.02	
HIGH FLOW 19 6 ND	ა <u>ნ</u>	
	CONCENTRATION. IN MILLIGRAMS PER LITER. 10.0	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


STREAMFLOW, IN CUBIC FEET PER SECOND

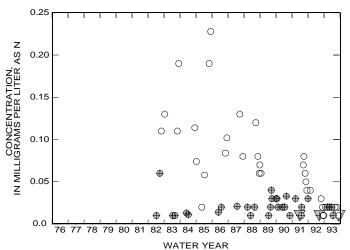
WATER YEAR

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.


[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

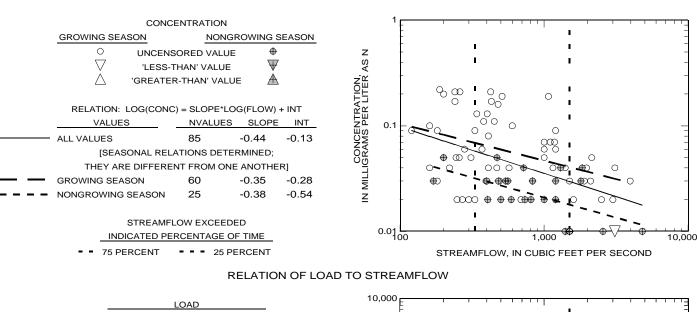
RELATION OF CONCENTRATION TO STREAMFLOW

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)


> STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle	'GREATER-THAN' VALUE	■ ▲
TD	ENDS IN CONCENTRAT	ION


	IREN	DS IN CONC	ENTRAI	ION
	VALUES	NVALUES	NWYS	SLOPE
L	OW FLOW	35	11	ND
Н	IGH FLOW	33	11	ND

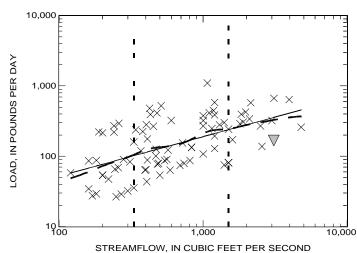
APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01389005 PASSAIC RIVER BELOW POMPTON RIVER, AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD

X UNCENSORED VALUE


□ 'LESS-THAN' VALUE

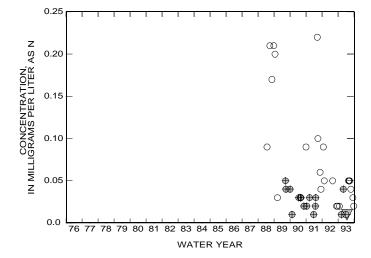
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

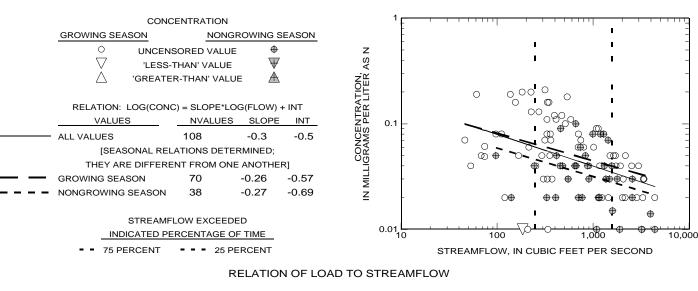
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
O U	NCENSORE	D VALUE	⊕
\triangle	'LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GI	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	23	6	ND

4

ND

17

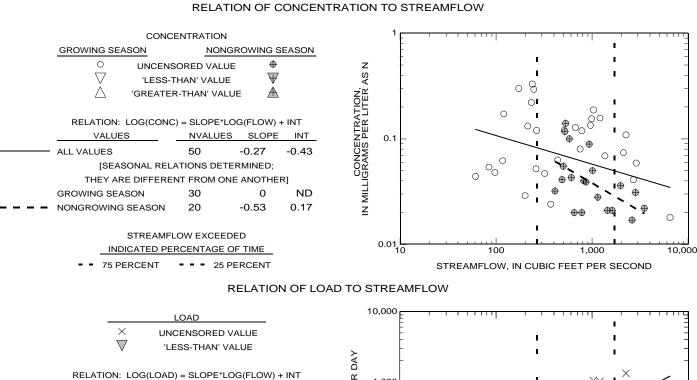

HIGH FLOW

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

<u>×</u> u	LOAD NCENSORED V	ALUE			1,000		· · · · · · · · · · · · · · · · · · ·	, , , ,
RELATION: LOG(LOA	LESS-THAN' VA		+ INT	ER DAY	100	**		×× -
VALUES	NVALUES	SLOPE	INT	PE	100	×	** ***	
ALL VALUES	108	0.7	0.23	UNDS	E	^ * * *	× · ·	=
SMOOTHED RELATION B	BETWEEN LOAD	AND FLC	W	РО	-		×	-
(SHOWN IF THERE ARE	10 OR MORE V	ALUES)		ζ	10	××××	1	
STREAM	FLOW EXCEED	ED		o,	E	-	-	=
INDICATED F	ERCENTAGE C	F TIME		_	-		1	_
■ ■ 75 PERCENT	25 P	ERCENT			-			_
					1 10	100	1,000	10,00
						STREAMFLOW, IN CU	BIC FEET PER SECON	٧D

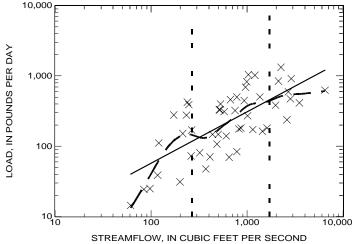

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		0.25		ı			-		т т	\neg
LOW FLOW HIGH F										
Z ZESS-THAN' VALUE	DN, ⊕	0.20	_	0		å)			-
GREATER-THAN VALUE		0.15				0				
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	E NH S	0.15						С)	
	ID AMO	0.10								
HIGH FLOW 24 8 N	ID SÃ					0			0	
	OI OI III	0.05	_		⊕	⊕	₩	· •		O∰C
	_			⊕	⊕	*	•	⊕ (⊕ • ⊕⊈	<u>,</u>
		0.0	76 77 78 79 80 81 82 83 84 85	<u> </u>	⊕ 87	⊕ 88	89 9	90 91	92 9	93

WATER YEAR

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

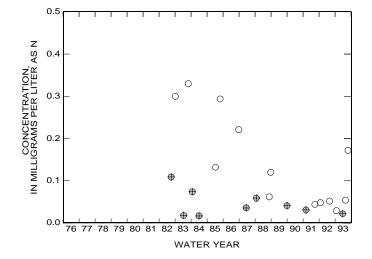

NVALUES SLOPE ALL VALUES SMOOTHED RELATION BETWEEN LOAD AND FLOW

VALUES

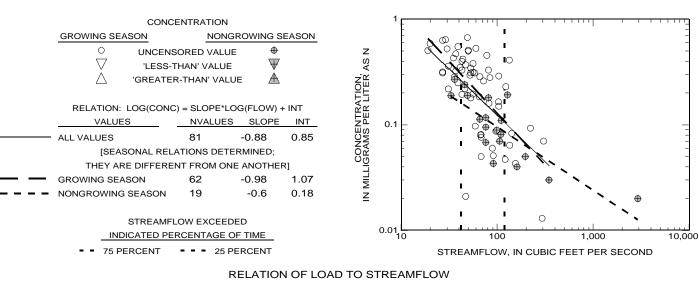
HIGH FLOW

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT

(SHOWN IF THERE ARE 10 OR MORE VALUES)



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION							
LOW FLOW			HIGH FLOW				
O и	 UNCENSORED VALUE 						
√ 'LESS-THAN' VALUE √							
TRENDS IN CONCENTRATION							
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	13	7	ND				

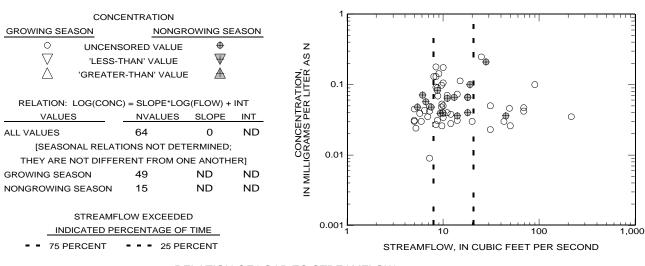
8

ND

RELATION OF CONCENTRATION TO STREAMFLOW

			LOAD				1,000	- 	 	1 1 1	9
		$\stackrel{\times}{ riangledown}$	UNCENSORED V 'LESS-THAN' VA			<u>}</u>	-	1 1 1 1 ×		×	
		ON: LOG(LC	OAD) = SLOPE*LO NVALUES	G(FLOW) +	INT INT	PER DA	100	× × × ×	× //		
	ALL VALUES	S	81	0	ND	ONDS	Ē		$\overline{}$		=
_	SMOOTHED	RELATION	BETWEEN LOAD	AND FLO	٧	PO	-	i ××× i	×		-
	(SHOWN IF	THERE ARE	10 OR MORE VA	ALUES)		Ď Ž	10	1			
		STREA	MFLOW EXCEED	ED		ο̈́	Ė	×			=
		INDICATED	PERCENTAGE O	F TIME		_	-	ı			-
	7	5 PERCENT	25 PE	ERCENT			-	i i			-
							10	100	1,000		10,000
								STREAMFLOW, IN CU	JBIC FEET PER	SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CON	CENTRATION			1.0	1 1	ı	1 1		ı	1 1	1			ı	1
LOW FLOW		HIGH FLOW	_												
'LESS	SORED VALUE -THAN' VALUE ER-THAN' VALUI	⊕ ₩ ±	ON, TER AS N	0.8	-										_
TRENIDS IN	CONCENTRAT	ION	CONCENTRATION.	0.6	_			0	0						_
	LUES NWYS	SLOPE	F.R.						V		\circ	0			С
LOW FLOW 18		ND	AMS	0.4	_				•)	0			0	_
HIGH FLOW 14	10	ND	00 8						0	Ø	0			0	
			WILL.		0			+		0					
			<u> </u>	0.2	_			•		00			⊕		_
				0.0	· · · · · ·	∌ ,			*		ı —	•	• •	1	+ +
				0.0	76 77	78 7	9 80 8	1 82 8	3 84	85 8	36 87	88 88	90	91 9	2 93

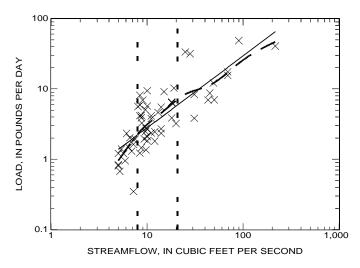
WATER YEAR

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

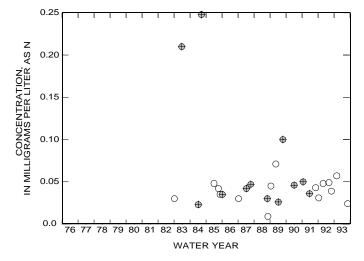
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


	X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE							
	RELATION: LOG(LOA	AD)	= SLOPE*LC	G(FLOW)	+ INT			
	VALUES		NVALUES	SLOPE	INT			
	ALL VALUES		64	1.02	-0.57			
_	SMOOTHED RELATION I (SHOWN IF THERE ARE				W			

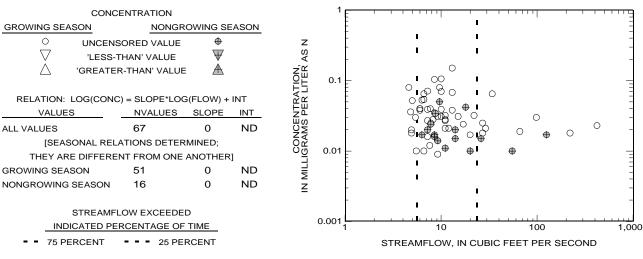
LOAD

STREAMFLOW EXCEEDED

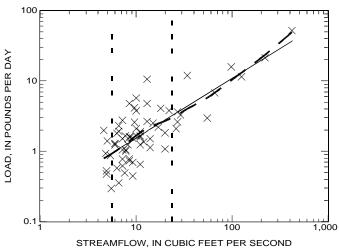

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

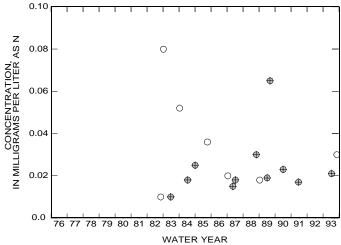

CONCENTRATION								
LOW FLOW			HIGH FLOW					
О U	NCENSORE	D VALUE	+					
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$					
△ 'GREATER-THAN' VALUE ⚠								
TREN	DS IN CONC	ENTRAT	ION					
VALUES	NVALUES	NWYS	SLOPE					
LOW FLOW	15	8	ND					
HIGH FLOW	12	8	ND					

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

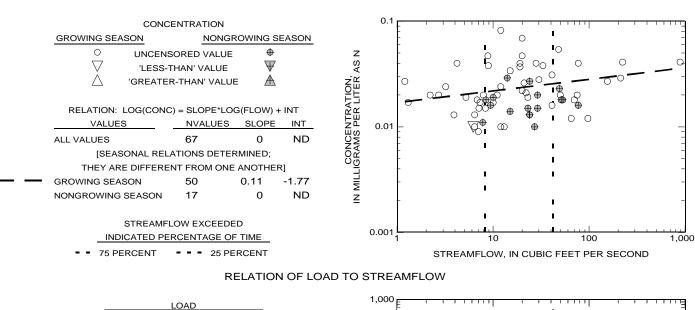
RELATION OF CONCENTRATION TO STREAMFLOW

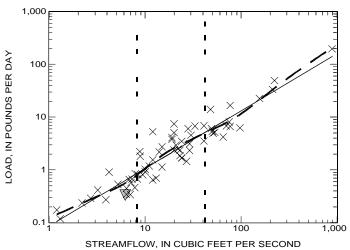
RELATION OF LOAD TO STREAMFLOW


	LOAD				100
×	UNCENSORED V	/ALUE			E
V	'LESS-THAN' VA	ALUE		×	-
RELATION: LOG(L	LOAD) = SLOPE*LO	OG(FLOW)	+ INT	ER D	10-
VALUES	NVALUES	SLOPE	INT	2	! ' `
ALL VALUES	67	0.85	-0.66	NDS	
SMOOTHED RELATIO	N BETWEEN LOAI	O AND FLC	w	Pou	}
(SHOWN IF THERE AF	RE 10 OR MORE V	ALUES)		Z Z	1
STRE	AMFLOW EXCEED	ED		OAI	E
INDICATE	D PERCENTAGE C	OF TIME		_	· -
75 PERCEN	IT = = = 25 P	ERCENT			-

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

z s
ž
ОË.
₽'⊐
돘삤
Π'Ω N'A
Š₹
00 03
Ě


CONCENTRATION

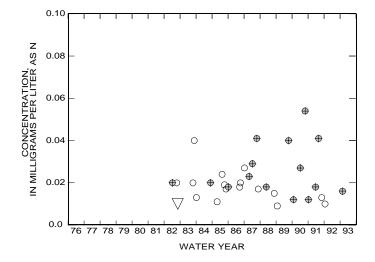

APPENDIX 13. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL NITRITE 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

		LOAD						
_	× UNCENSORED VALUE VLESS-THAN' VALUE							
RELATIO	N: LOG(LOA	D) = SLOPE*LO	OG(FLOW)	+ INT				
VAL	UES	NVALUES	SLOPE	INT				
ALL VALUES		67	1.09	-1.06				
- SMOOTHED	RELATION B	ETWEEN LOAI	O AND FLO	W				
(SHOWN IF 1	THERE ARE 1	0 OR MORE V	ALUES)					
	STREAM	FLOW EXCEED	ED					
<u></u>	NDICATED PI	ERCENTAGE C	OF TIME					
 75	PERCENT	25 P	ERCENT					

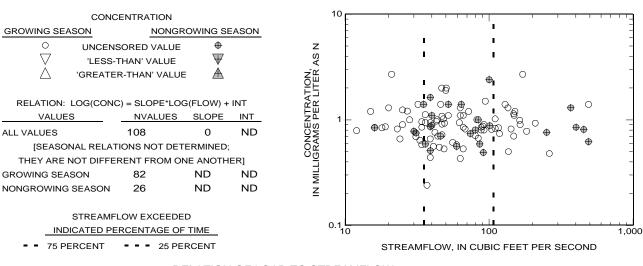
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION								
LOW FLOW HIGH FLOW								
Ο υ	NCENSORE	D VALUE	⊕					
√ 'LESS-THAN' VALUE √								
△ 'G	REATER-THA	N' VALUE	A					
TRENDS IN CONCENTRATION								
VALUES	NVALUES	NWYS	SLOPE					
LOW FLOW	17	10	ND					

9

ND

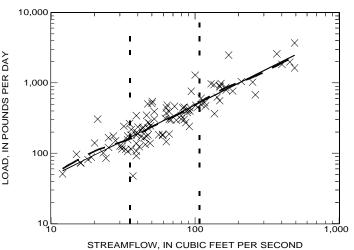
15


HIGH FLOW

Appendix 14 Total ammonia plus organic nitrogen

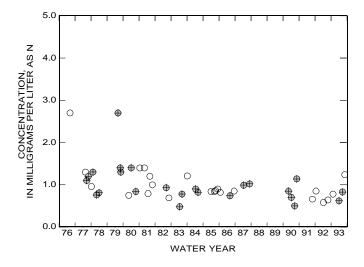
Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

RELATION OF CONCENTRATION TO STREAMFLOW

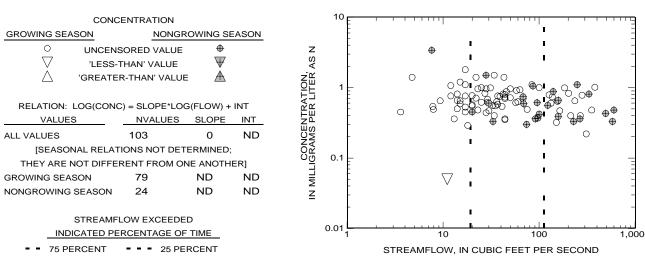


RELATION OF LOAD TO STREAMFLOW

_	L		10,000			
		CENSORED V SS-THAN' VA			×	-
RELATIO	N: LOG(LOAD)	= SLOPE*LC	G(FLOW) -	+ INT	R D	1,000
VAL	UES	NVALUES	SLOPE	INT	PE	1,000
ALL VALUES	;	108	1.02	0.65	SONOC	- - -
— SMOOTHED	RELATION BET	TWEEN LOAD	AND FLO	W	POL	-
(SHOWN IF ⁻	ΓHERE ARE 10	OR MORE V	ALUES)		AD, IN	100
	STREAMFL	OW EXCEED	ED		o'	Į X
<u>_ I</u>	NDICATED PER	RCENTAGE C	F TIME_		_	-


- - 25 PERCENT

75 PERCENT



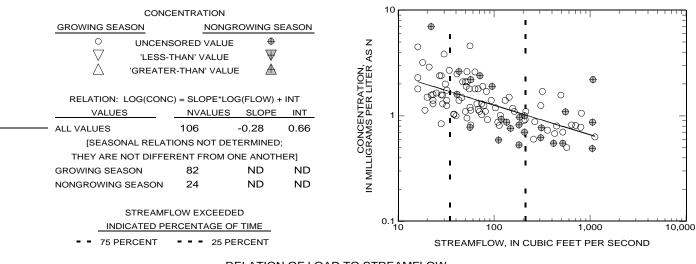
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION	
LOW FLOW	HIGH FLOW		
Ο υ	D VALUE	⊕	
∇	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	■ ▲		
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	22	11	ND
HIGH FLOW	25	11	ND

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	1,000 BB BB BB BB BB BB BB BB BB BB BB BB
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	ND 100 X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

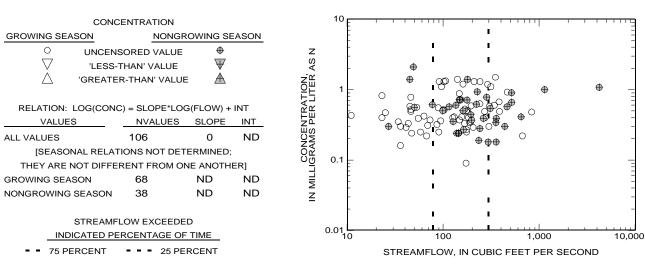
CONCENTRATION	
LOW FLOW HIGH FLOW	
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼	Z Ø 4.0 Z <u>C</u>
∴ 'GREATER-THAN' VALUE Æ	110 0 H
TRENDS IN CONCENTRATION	#H H H H H H H H H H H H H H H H H H H
VALUES NVALUES NWYS SLOPE	Σu
LOW FLOW 22 12 ND	U∑ Z
HIGH FLOW 26 15 0	OCONO 2.0 – O

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	10,000 ×
ALL VALUES 106 0.72 1.39	
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	1,000
75 PERCENT 25 PERCENT	100 1 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

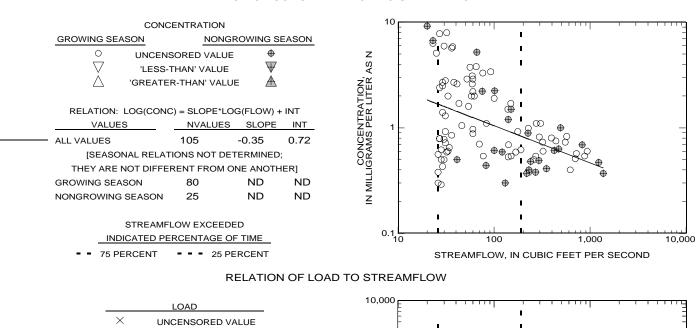
CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE ♥ ▽ 'LESS-THAN' VALUE ▼ △ 'GREATER-THAN' VALUE ▲	CONCENTRATION, IGRAMS PER LITER AS N	0
TRENDS IN CONCENTRATION	ξ ER	
VALUES NVALUES NWYS SLOPE	ÄΩ	
LOW FLOW 25 13 ND	NA VA 4	
HIGH FLOW 24 14 0	25. 25.	0
	N N	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT X VALUES NVALUES SLOPE INT U	10,000
ALL VALUES 106 1.08 0.25	1,000
(SHOWN IF THERE ARE 10 OR MORE VALUES) Z STREAMFLOW EXCEEDED	100 ×
INDICATED PERCENTAGE OF TIME	
	10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

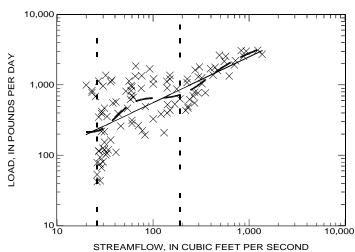

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		2.0	'	,	1 1	1	1 1	1 1		1 1	- 1	1 1	- 1	'
LOW FLOW	SH FLOW	_												
O UNCENSORED VALUE	Ψ (Z 20, 2.0			0									_
√	W .													
△ 'GREATER-THAN' VALUE	DO OO OO OO OO OO OO OO OO OO OO OO OO O	Ī												
	\ ⊢ \	1.5	<u> </u>	•	₽									_
TRENDS IN CONCENTRATION	T. Y.	Į.	0											
VALUES NVALUES NWYS SI	<u>-OPE</u> Hu	<u>N</u>												
LOW FLOW 26 14	0 2	∑ (1.0	_ 4)	*									_
HIGH FLOW 21 12	ND 86	צ ט			⊕		0			0		•		
		3			⊕	Φ_	e €			-				
		0.5			₩	⊕@ (æ *	₽	0	$\Phi_{\mathcal{O}}$				→
	4	≤	⊕	₽		0	Φ _	0	#		0		B	***
			⊕ •			~	. 0	(S 0		()	_	0
		0.0	76 7	7 78	70	80 8°	1 82 8	3 84	85 8	6 87	88 80	90	01 0	2 03
			10 /	, ,,	19	00 0	02 0	5 64	05 6	0 07	00 08	90	91 9	2 93

WATER YEAR

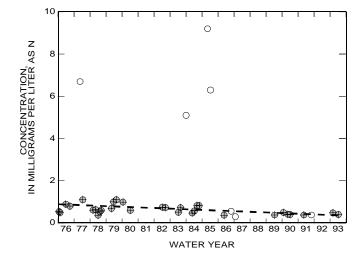
25-

RELATION OF CONCENTRATION TO STREAMFLOW

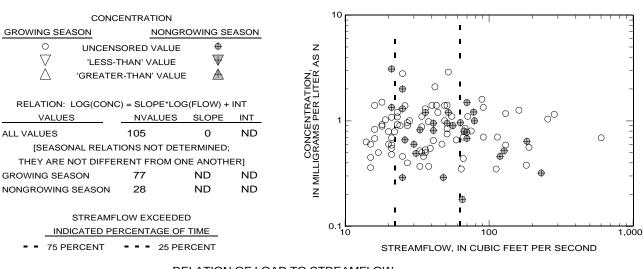


'LESS-THAN' VALUE

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES **VALUES** SLOPE 105 ALL VALUES


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

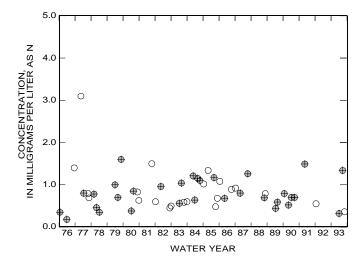
> STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT



TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION										
LOW FLOW	/		HIGH FLOW									
0	O UNCENSORED VALUE											
∇	C'LESS-THAN' VALUE											
\triangle	≣ ▲											
_												
TF	RENDS IN CONC	ENTRAT	ION									
VALUES	NVALUES	NWYS	SLOPE									
LOW FLO	w 7	6	ND									
HIGH FLO	W 31	13	-0.03									

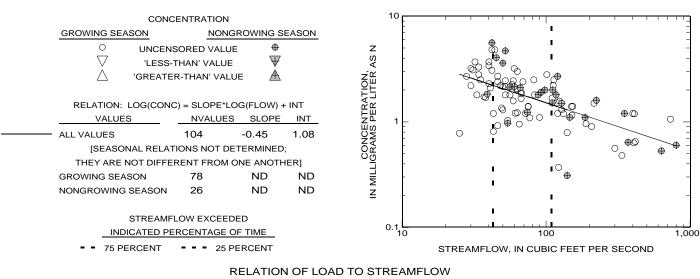
RELATION OF CONCENTRATION TO STREAMFLOW



RELATION OF LOAD TO STREAMFLOW

	LOAD				10,000	1 1	•	1 1 1 1
$\stackrel{ imes}{ riangledown}$	UNCENSORED V			DAY	Ē	1 1	! !	\/ /
RELATION: LOG(I	LOAD) = SLOPE*LO NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D	1,000		× . × ×	×
 ALL VALUES	105	0.95	0.72	SOUNDS	-	××		××
 SMOOTHED RELATIO	N BETWEEN LOAD	O AND FLC	W	POL	-			
(SHOWN IF THERE AF	RE 10 OR MORE V	ALUES)		AD, IN	100		₹^	
STRE	AMFLOW EXCEED	ED		o o	E		^	
INDICATE	D PERCENTAGE C	F TIME		_	-	× ^	1	
 75 PERCEN 	IT = = = 25 P	ERCENT				1	ı	
					1010		100	

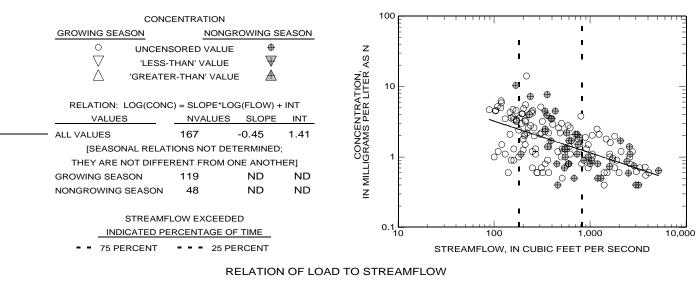
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION								
LOW FLOW			HIGH FLOW							
О U	NCENSORE	D VALUE	+							
▽ ,	abla 'LESS-THAN' VALUE $ abla$									
☐ 'GREATER-THAN' VALUE ⚠										
TREN	DS IN CONC	ENTRAT	ON							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	22	12	ND							
HIGH FLOW	32	16	0							

STREAMFLOW, IN CUBIC FEET PER SECOND

1,000

RELATION OF CONCENTRATION TO STREAMFLOW


	LOAD		10,000		
$\stackrel{ imes}{ riangledown}$	UNCENSORED VALU		<u>-</u>	1 1	>
RELATION: LOG(L VALUES	.OAD) = SLOPE*LOG(F NVALUES SL	LOW) + INT OPE INT	ER D	ı ı	×××
ALL VALUES		.55 1.81	80	**************************************	× × ×
SMOOTHED RELATIO	N BETWEEN LOAD AN	D FLOW	5 1,000		** ×
(SHOWN IF THERE AF	RE 10 OR MORE VALU	ES)	Z Ú		×
	AMFLOW EXCEEDED	NAIT.	LOA	/×* * × × ×	<
= = 75 PERCEN	D PERCENTAGE OF TI		-	×	
			100	100	
				STREAMFLOW, IN CUBIC F	EET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		10	- 1	1	1	1	ı	1	1	1	ı	Т			- 1			
LOW FLOW HIGH FLOW	_																	
○ UNCENSORED VALUE	AS N	8	_															_
√ 'LESS-THAN' VALUE √	_	Ĭ																
	ER,																	
	₽ □	6	_															_
TRENDS IN CONCENTRATION	똤	Ĭ)														
VALUES NVALUES NWYS SLOPE	CONCENTR, IN MILLIGRAMS PER											0						
LOW FLOW 20 11 ND	Š₹	4	_															_
HIGH FLOW 36 15 0	OS S		_	8			0	\circ	0									
	Ė		0		⊕		_	$\tilde{\circ}_{\Phi}$	0			0						
	₹	2	<u>Ф</u>		Ψ				0 (9		~	_ (. 0	
	Z	ļ	Ψ.	+ 4	⊕ €	**		4	4 D	∪ (₽	Φ_{C}) .	_	*	∌ ∜	Ф ^О	Ф
		4)	4	r D ф			æ	₩ ⊕) d			⊕(₽	ΨΦ	. 4	,	40
		T		-	- Ψ	•			- 4	₩ Ф								4

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 167 0.55 2.15 0 0 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME INDICATED PERCENTAGE OF TIME	LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	>	100,000		
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	VALUES NVALUES SLOPE INT ALL VALUES 167 0.55 2.1 SMOOTHED RELATION BETWEEN LOAD AND FLOW		-		
100 100 1,000 10,00		LOAD,	-	100 1,000 10,000	000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

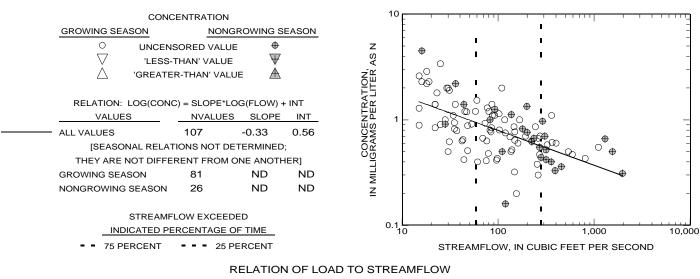
CONCENTRATION	25	
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE ♥ V 'LESS-THAN' VALUE ♥ △ 'GREATER-THAN' VALUE ★	Z 20 · VC	_
TRENDS IN CONCENTRATION	ER LITE	-
VALUES NVALUES NWYS SLOPE	äα Zα	
– LOW FLOW 29 14 -0.25	O∑ 20 10	_ 0
- HIGH FLOW 48 17 -0.046	00 08	
	CONCENTRATION. IN MILLIGRAMS PER LITER	

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

CONCI	ENTRATION				10		 	 		
GROWING SEASON	NONG	ROWING S	EASON		ŧ				I	=
$\overline{}$	ORED VALUE	⊕ ₩		Z SA	† - +			•	i i	-
, ,	R-THAN' VALU	E Å		TON,	<u> </u>		(•	1	-
RELATION: LOG(CONC VALUES) = SLOPE*LO NVALUES	G(FLOW) +	- INT INT	ΕĀ	4		0	○ 	I ⊕	
ALL VALUES	99	0	ND	CONCENTR IGRAMS PER	' F				•	⊕ = = = = = = = = = = = = = = = = = = =
[SEASONAL RELATI				0.0 0.5	_	0 0	_0 🖲		, ₽ ⊂	0 0 0
THEY ARE NOT DIFFER				Ē	Ţ	0	go i		D _⊕ I	• •
GROWING SEASON	60	ND	ND	N M N	Ŷ		₩ 9			_
NONGROWING SEASON	39	ND	ND	Z	-			⊕ 4 448 €€	. •	-
STREAMFL	OW EXCEEDE	ĒD								
INDICATED PER	RCENTAGE O	FTIME			0.1	0.1	1	10	100	1,000
75 PERCENT	25 PE	ERCENT				STREAM	MFLOW, IN	CUBIC FEET P	ER SECON	1D
	_	EL A TION			DE 4 4 4 E					

RELATION OF LOAD TO STREAMFLOW


	LOAD UNCENSORED VA	ALLIE			10,000	 			- 	
∇	'LESS-THAN' VA			≻A	1000				' ×	
RELATION: LOG(LO	DAD) = SLOPE*LO NVALUES	G(FLOW) SLOPE	+ INT INT	PER D	100			×	×	-
ALL VALUES	99	0.98	0.43	OUNDS	10=		~		ı	
SMOOTHED RELATION (SHOWN IF THERE AR			W	, IN POU	1				1	-
	MFLOW EXCEEDS			LOAD	0.1				1	= - -
75 PERCENT	「 ■ ■ ■ 25 PE	ERCENT			0.01	0.1	1	10	100	1,000
							AMFLOW, IN	I CUBIC FEET	PER SECO	ND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRA	TION			2.5		1	1 1	П	-	ı	ı	ı					ı	- 1	Т	
LOW FLOW UNCENSORED LESS-THAN' \ GREATER-THAN	VALUE /ALUE	IGH FLOW ⊕ ₩ Æ		2.0	_															_
TRENDS IN CONCE		N SLOPE_	ENTRATI S PER LI	1.5	_		⊕													=
LOW FLOW 0 HIGH FLOW 12	0 7	ND ND	CONCENTRATION.	1.0	_		+ +	⊕		⊕										-
			∑ <u>Z</u>	0.5	-	+	Ψ	⊕		+ +										+
				0.0	76 7	7 78	79	80 8	31 8	32 83	84	85	86	87	88	89	90	91	92	93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

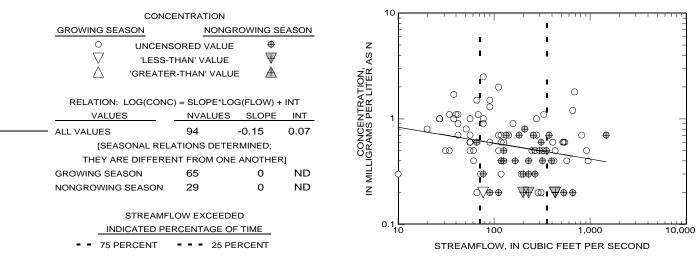
LOAD		10,000	1 1 1			
× UNCENSORED VALUE		F			X _V .	=
CLESS-THAN' VALUE	>	_	-	·	×	:]
	Ś	5		v ×	× _//	-
RELATION: $LOG(LOAD) = SLOPE*LOG(FLOW)$) + INT	1,000		ı × .^x		
VALUES NVALUES SLOPE	INT	1,000			&X	∃
ALL VALUES 107 0.67	1.29	3 - [~ × × ?		,,	3
	3	5	\(\)\(\)\(\)			-
SMOOTHED RELATION BETWEEN LOAD AND FL	.ow	2 -		× ^ .		-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	3	100		×^^ × ^ •		
	9	j .00 F	\times $^{\prime}$ \times $^{\prime}$ $^{\prime}$			=
STREAMFLOW EXCEEDED	č	E		1		3
INDICATED PERCENTAGE OF TIME	<u>-</u>	'		ı		-
75 PERCENT 25 PERCENT		-	ı			-
		10		100	1,000	10,000
			STREAM	IFLOW, IN CUB	IC FEET PER SE	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

0

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

0


Ο υ	NCENSORE	D VALUE	⊕	S	4.0	_
∇	LESS-THAN	VALUE	$\overline{\Psi}$	ž	7.0	
△ 'GF	REATER-THA	N' VALUI	E A	N H		0
				<u> </u>	3.0	
TREN	IDS IN CONC	ENTRAT	ION	동모	5.0	
VALUES	NVALUES	NWYS	SLOPE	Ω N. G.		0
 LOW FLOW	37	16	-0.089	A Z S	2.0	-0
HIGH FLOW	18	12	ND	0.0 7.0		<u> </u>
				Ë		0 0 0 0 0
				₹	1.0	• • • • • • • • • • • • • • • • • • • •

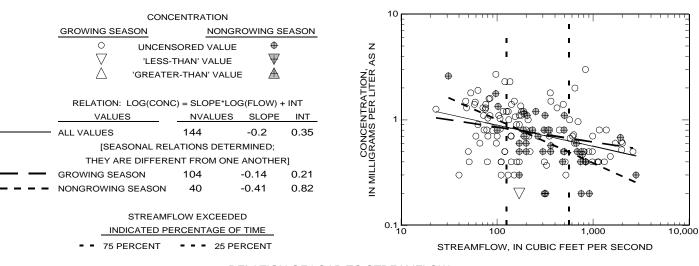
HIGH FLOW

CONCENTRATION

LOW FLOW

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 94 0.85 0.8	1,000 × × × × × × × × × × × × × × × × × ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	2 100 X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10 100 1,000 10,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

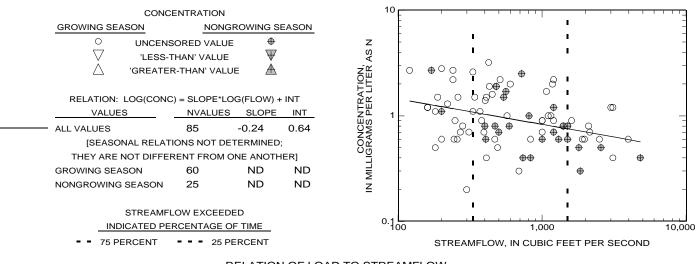
CONCEN	ITRATION				' '	1 1	' '		1 1	ı	1 1	- 1			'	1
LOW FLOW	HIG	GH FLOW	_													
O UNCENSO	RED VALUE	⊕	Z S V	2.0	_											
√ 'LESS-TH	AN' VALUE	$\overline{\Psi}$											•	h		
△ 'GREATER-	THAN' VALUE	\triangle	TER,									0	-	Þ		
			<u> </u>	1.5	_								0		-	_
TRENDS IN CO	NCENTRATION	1	F.F.													
VALUES NVALUE	S NWYS S	LOPE	N N N N N N N N N N N N N N N N N N N								_	⊕		_		
LOW FLOW 25	7	ND	AZ AZ	1.0	_						0	U		00		4
HIGH FLOW 19	6	ND	25									0		0		
			∃								€		₩ ⊕	0	0	,
			CONCENTRA	0.5	_							○ €	$\bigoplus_{i} \Phi_i$	О	⊕ €	€
			≥								_	_ '	⊕	⊕	4	.0
											+	₿		\oplus	0₩	
				0.0	76 77 7	8 79 80) 81	82 83	3 84	85 86	3 87	88 89	9 90	91	92 93	
					. 5 // /	0,000	, 51	02 00	, 54	00 00	5 51	00 0.	5 50	01	J_ J	1

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE >	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 144 0.8 1.08	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	100
INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10 10 10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	5.	.0		1 1 1 1 1 1	1 1
LOW FLOW HIGH FLOW					
O UNCENSORED VALUE ♥ VIESS-THAN' VALUE ▼ OREATER-THAN' VALUE ★	ION, TER AS N	.0 –			-
TRENDS IN CONCENTRATION	PER LI	.0 –	•	0	_
VALUES NVALUES NWYS SLOPE			O	0	
LOW FLOW 45 13 ND HIGH FLOW 36 13 ND	CO	.0 –			_

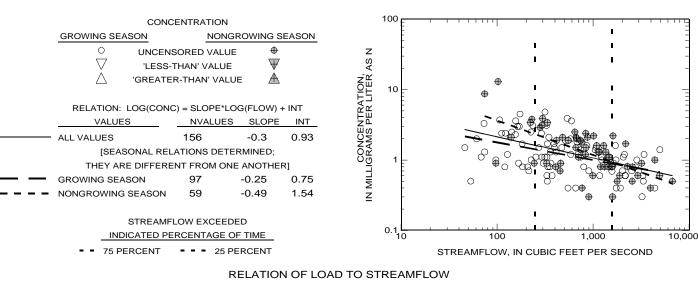
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

50-

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES	10,000
 ALL VALUES 85 0.76 1.37 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 	1,000 - X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	
	100 1,000 1,000 10 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

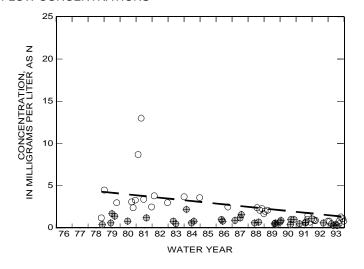
(CONCENTR	ATION			5.0		ı	1			ı	1	1		1			1 1	'	'	
LOW FLOW			HIGH FLOW																		
<u> </u>	ICENSOREI	VALUE	<u>+</u>		4.0	L															_
, L	ESS-THAN'	VALUE	$\stackrel{\bullet}{\Rightarrow}$																		
△ 'GR	EATER-THA	N' VALUE	Ξ Α	NTRATION, PER LITER																	
				R L	3.0	H										_					-
	OS IN CONC			ËË												∞	9			0	
VALUES	NVALUES	NWYS	SLOPE	ASE ASE												0					
LOW FLOW	22	6	ND	AN AN	2.0	_															-
HIGH FLOW	17	4	ND	0 <u>0</u>												С)		0		
				CONCE												·		₽ Ф.	Ğ,		0
				z	1.0	_											Φ,	⊕ ⊕ ⊕	0	~	9
				_													#	₩	∰	∞_{Φ}	Q
					0.0		1				1		1							₽	اسو
					0.0	76 7	7 78	3 79	80 8	81 8	32 8	3 84	85	86	87	88	89	90 9	91 9	2 9	3

WATER YEAR

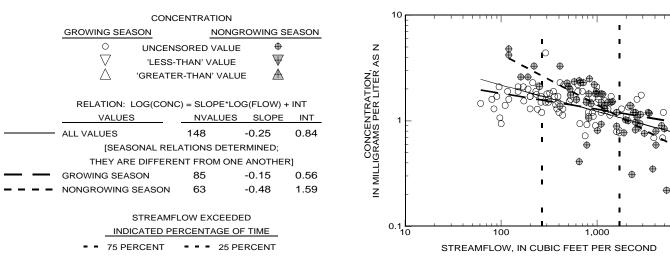
50-

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
	10,000 X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

, ,	NCENSOREI LESS-THAN' REATER-THA	VALUE	
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
 LOW FLOW	34	13	-0.196
HIGH FLOW	35	14	0


CONCENTRATION

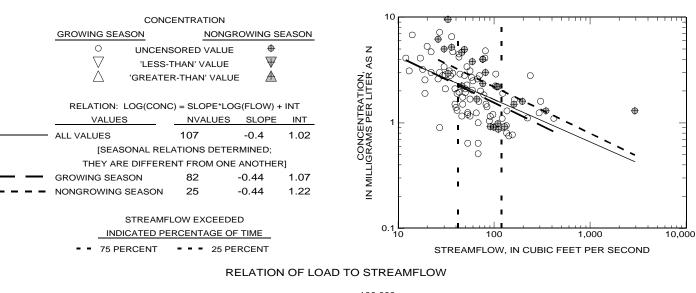
HIGH FLOW

LOW FLOW

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

10,000


LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	100,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	10,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	1,000
	100 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

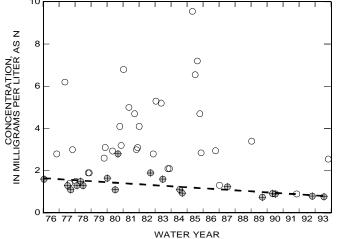
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	5			
LOW FLOW HIGH FLOW				
○ UNCENSORED VALUE	Z S 4	.0 –	0	_
V LESS-THAN VALUE W		.		
	岜		0	
I L	<u> </u>	.0	O	_
TRENDS IN CONCENTRATION	ER			
VALUES NVALUES NWYS SLOPE	S		0	
LOW FLOW 32 12 ND Z	IGRAMS PER LITER	.0 –	6 0	_
HIGH FLOW 34 14 0			° 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 0
		⊕	0 4 9 - 0	0 00
	∐ ₩ 1.	.о 🖁		○
	Z	Ψ		⊕
		*		
		4	⊕	

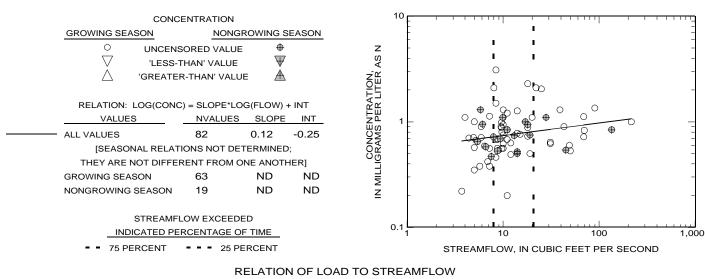
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	100,000
VALUES NVALUES SLOPE INT	Y 10,000 X 1 X 1 X X 1 X X X X X X X X X X X
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	1,000
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	
	100 10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LOW FLOW			HIGH FLOW		
Ο υ	NCENSORE	D VALUE	⊕	Z Ø	8
,	LESS-THAN'	VALUE	¥	-ζα -ζ	
△ 'GF	REATER-THA	N' VALUI	≣ Æ		
				R LI	6
TREN	IDS IN CONC	ENTRAT	ION	Ė	
VALUES	NVALUES	NWYS	SLOPE	Äα	
LOW FLOW	33	14	ND	AN AN	4
 HIGH FLOW	19	12	-0.048	GR	
				3	
				=	


HIGH ELOW

CONCENTRATION

LOW ELOW

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 82 1.12 0.48 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 82 1.12 0.48 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) Z Z Z Z Z Z Z Z Z Z Z Z Z	$\frac{}{}$	LOAD UNCENSORED VALUE 'LESS-THAN' VALUE	>	10,000	<u> </u>	1 1	1 1 1 1 1
(SHOWN IF THERE ARE 10 OR MORE VALUES)	(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	VALUES	NVALUES SLOPE	TAIL TAIL		 	- - - - - - - - - - - - - - - - - - -	
	75 PERCENT 25 PERCENT	(SHOWN IF THERE AI	RE 10 OR MORE VALUES)	A COAD, IN PC	10		(X) 	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

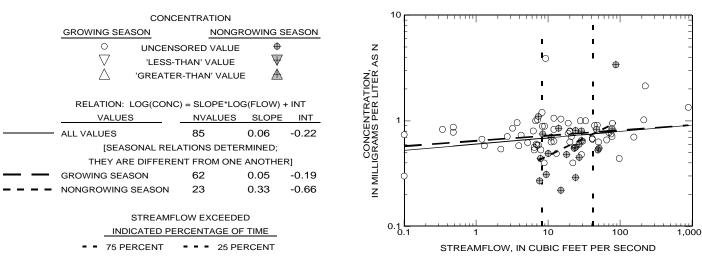
CONCENTRATION			
LOW FLOW HIGH FLOW	_		
○ UNCENSORED VALUE ⊕	AS N	2.0	⊕ ⊕
abla 'LESS-THAN' VALUE $ abla$			
	ION, TER		
	누그	1.5	,_
TRENDS IN CONCENTRATION	CONCENTRAIN MILLIGRAMS PER		⊕ ○ ⊕
VALUES NWYS SLOPE	Ä.S		
LOW FLOW 22 10 ND	ΣŽ	1.0	ı⊢
HIGH FLOW 16 11 ND	00 80		• •
	\exists		00 0 0 0 0 0 0
	Σ	0.5	
	Z		8 0
			0
		0.0	70, 77, 70, 70, 00, 04, 00, 02, 04, 05, 00, 07, 00, 00, 04, 00, 02
			76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

GROWING SEASON O UNCEN 'LESS-	CENTRATION NONG SORED VALUE THAN' VALUE R-THAN' VALU	Ψ	EASON_	TION, TER AS N	
RELATION: LOG(CON	C) = SLOPE*LC)G(FLOW) +	· INT	.R.R.	
VALUES	NVALUES	SLOPE	INT	F	
ALL VALUES	83	0	ND	CONCEI IGRAMS	0
[SEASONAL REL	_ATIONS DETE	RMINED;		QX A	
THEY ARE DIFFERE	ENT FROM ON	E ANOTHER	₹]	^이 를 0.1 는	<u> </u>
GROWING SEASON	63	0	ND	d f	<u> </u>
NONGROWING SEASON	20	0	ND	Z -	₩ -
	FLOW EXCEED			0.01	10 100 1,000
= 75 PERCENT		ERCENT		'	STREAMFLOW, IN CUBIC FEET PER SECOND

RELATION OF LOAD TO STREAMFLOW


LOAD		10,000		 	
$ imes$ uncensored value $ ilde{\mathbb{V}}$ 'less-than' value	>	1000	1	 	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) - VALUES NVALUES SLOPE	PE TAIL	100=	1 1 ×	× ×	
ALL VALUES 83 1	0.51	100		×	
 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) 	W N PC	10		1 1	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	LOAI	1	.	1	-
75 PERCENT 25 PERCENT		0.1	1 10	100	1,000
			STREAMFLOW,	IN CUBIC FEET PER	SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		2.5	
O UNCENSORED VALUE O 'LESS-THAN' VALUE	⋖	2.0	_
	NTRATION PER LITE	1.5	O
VALUES NVALUES NWYS SLOPE LOW FLOW 14 9 ND HIGH FLOW 13 11 ND	CONCENTRATION, IN MILLIGRAMS PER LITER	1.0	
	IN MIL	0.5	0
		0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

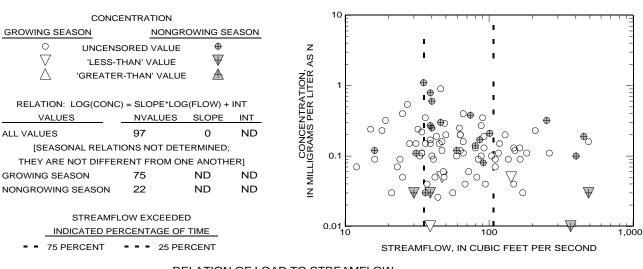
LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES	100
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED	10 × 1
INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	0.1 1 10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		
LOW FLOW HIGH FLOW		
○ UNCENSORED VALUE	N 4.0 ER, 40	<u>−</u>
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	O'E LI	_
LOW FLOW 27 13 ND HIGH FLOW 18 11 ND	GRAMS GRAMS 0.0	_
	1.0 Z	

0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR


Appendix 15 Total ammonia

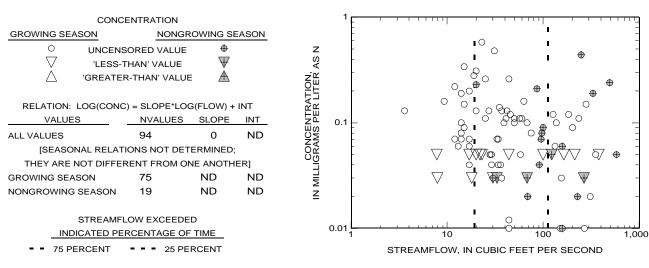
Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388000	Ramapo River at Pompton Lakes, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389005	Passaic River below Pompton River, at Two Bridges, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE	1,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	
ALL VALUES 97 0.8 0.15 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	LOAD. IN POUL BY A STATE OF THE PART OF TH
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				1 1	1 1		1		1				'	' '
LOW FLOW			HIGH FLOW	_												
Ο υ	NCENSORE	D VALUE	⊕	Z S Z	2.0	_										_
,	LESS-THAN	VALUE	$\overline{\Psi}$	7												
△ 'G	REATER-THA	N' VALUI	■ ▲	TER,												
				ZAT	1.5	_										_
TREN	IDS IN CONC	ENTRAT	ION	异												
VALUES	NVALUES	NWYS	SLOPE	<u> </u>				_								
LOW FLOW	21	10	ND	AN AN	1.0	_		0								_
HIGH FLOW	22	11	ND	CONCENTRA												
				∃												
				IN MILL	0.5	_			()						_
				≥			•	~ ~	_		S					
							• • • • • • • • • • • • • • • • • • •		**************************************	() 7))	Φ.		⊕	ക	n_4
					0.0	76 77 7	8 79 80	81.8			5 86		8 89	177	91 9	2 93
							0 .0 00	٠. ٠	_ 00	٠. ٠		0. 0		•		_ 00

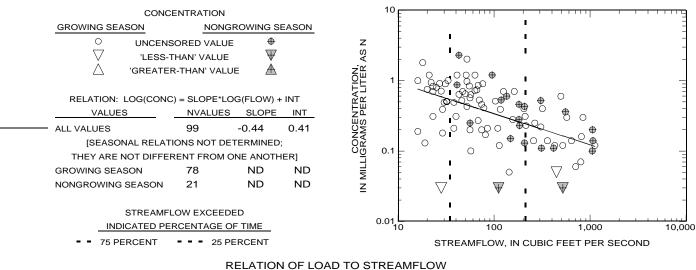
WATER YEAR

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	1,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	LOAD, IN POUR
	1 10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		
LOW FLOW HIGH FLOW	_	⊕
○ UNCENSORED VALUE ⊕	Z თ 0.4	_
abla 'LESS-THAN' VALUE $ abla$	_ :	
	CONCENTRATION IGRAMS PER LITER 70 80 80	0
	¥⊒ 0.3	-
TRENDS IN CONCENTRATION	봈	0
VALUES NVALUES NWYS SLOPE	SE	•
LOW FLOW 21 13 ND	ŽŽ 0.2	
HIGH FLOW 24 13 0	95 85	
		•
	⊒ ₩ _{0.1}	
	∠	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD			10,000		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ппр	
$\underline{\times}$	UNCENSORED VAL	UE		E	ľ	·		3
V	'LESS-THAN' VALU	E	>	-	1	ı ×	. X.,	-
RELATION: LOG(VALUES	LOAD) = SLOPE*LOG(NVALUES S	FLOW) + INT	PER DA	1,000	ı××	×××××××××××××××××××××××××××××××××××××××		
ALL VALUES		0.56 1.14	DS F	Ė	· · · · · · · · · · · · · · · · · · ·	××^	X	-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Š	100	X	$\langle \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times$	7	=
— SMOOTHED RELATION	ON BETWEEN LOAD A	ND FLOW	PO	E		·		3
(SHOWN IF THERE A	RE 10 OR MORE VALU	JES)	Z	E	^× · · ×			
	AMFLOW EXCEEDED		LOAD	10	×	V 1		_
	D PERCENTAGE OF 1			F	V	I		=
= = 75 PERCEI	NT = = = 25 PER	CENT		t	I -	1		-
				1 10	1	100	1,000	10,000
					STREAMFL	OW, IN CUBIC FE	ET PER SEC	COND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		- 1		1
LOW FLOW HIGH FLOW	_			
○ UNCENSORED VALUE ⊕	AS N	2.0	<u>L</u> .	
abla 'LESS-THAN' VALUE $ abla$	_		0	
$ riangle$ 'GREATER-THAN' VALUE $ extcal{A}$	TER			
	トコ	1.5	<u></u>	_
TRENDS IN CONCENTRATION	TR/			
VALUES NWYS SLOPE	SEN		0	
LOW FLOW 22 13 ND	CONCE	1.0	- 0 0 .	_
HIGH FLOW 25 14 0	OS R			
	Ē			
	N MILL	0.5	⊕	_
	Z			
		0.0	<u> </u>	7
			76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	3

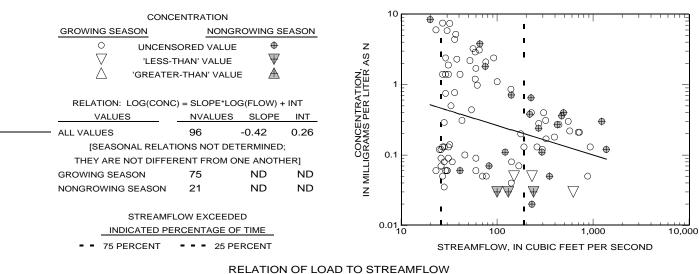
WATER YEAR

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

GROWING SEASON O UNCENS 'LESS-	ENTRATION NONGROWING SORED VALUE THAN' VALUE R-THAN' VALUE	G SEASON ⊕ ₩ Æ	ER AS N	
RELATION: LOG(CONC VALUES ALL VALUES	C) = SLOPE*LOG(FLOV NVALUES SLOPE 89 0	•	CONCENTRATIC GRAMS PER LIT 100	
[SEASONAL RELAT	IONS NOT DETERMIN	IED;	GRAN	
THEY ARE NOT DIFFEL GROWING SEASON NONGROWING SEASON	59 ND 30 ND	ND ND	W WILL	
	LOW EXCEEDED RCENTAGE OF TIME 25 PERCENT	<u>-</u> г	0.01	100 T1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

RELATION OF LOAD TO STREAMFLOW


×	LOAD UNCENSORED V			4	10,000			*	- - -
RELATION: LOG(VALUES	LOAD) = SLOPE*LO _NVALUES	OG(FLOW) SLOPE	+ INT INT	PER DA	1,000		******		
ALL VALUES	89	1.02	-0.56	JNDS	100 =	×			
SMOOTHED RELATION (SHOWN IF THERE A			DW .), IN POL			1××		
	:AMFLOW EXCEED ED PERCENTAGE C			LOAD	10		√		
75 PERCE!	NT = = = 25 P	ERCENT			1 10	× ,	I 00 1,00	0 1	10,000
						STREAMFLO	W, IN CUBIC FEET PE	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	0.5
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE ⊕ ○ 'LESS-THAN' VALUE ₩ △ 'GREATER-THAN' VALUE ★	AS AS AS AS AS AS AS AS AS AS AS AS AS A
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	W PER LI
LOW FLOW 24 14 0 HIGH FLOW 15 10 ND	IN MILLIGRAMS PER LITER 0.0 0
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT YALUES NVALUES SLOPE INT 1,000	
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	
LOW FLOW HIGH FLOW	_
○ UNCENSORED VALUE ⊕	Z Ø 8
abla 'Less-than' value $ abla$	
△ 'GREATER-THAN' VALUE A A A A B C A B C A B C C C C C C C C C C C C	CONCENTRATION. CONCENTRATION.
	F-1, 6- 0
TRENDS IN CONCENTRATION	K. H. C. C. C. C. C. C. C. C. C. C. C. C. C.
VALUES NVALUES NWYS SLOPE	ÄΩ
LOW FLOW 7 6 ND	925 4-
HIGH FLOW 29 12 0	000
	⊒
	\(\bar{2}\) -
	4
	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	10 11 10 19 00 01 02 03 04 05 00 01 00 09 90 91 92 93

WATER YEAR

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

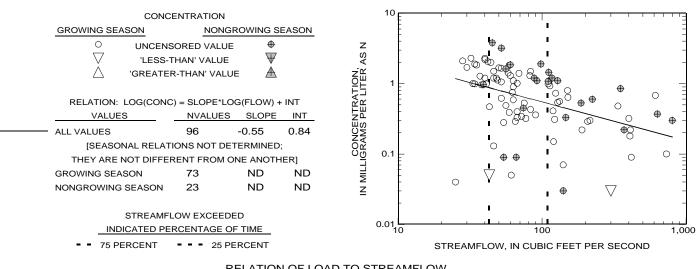
RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION GROWING SEASON O UNCENSORED VALUE VILESS-THAN' VALUE O GREATER-THAN' VALUE RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT VALUES NVALUES NVALUES SLOPE INT ALL VALUES 97 O ND [SEASONAL RELATIONS NOT DETERMINED; THEY ARE NOT DIFFERENT FROM ONE ANOTHER] GROWING SEASON 71 ND NONGROWING SEASON 26 ND ND	N MILLIGRAMS PER LITER AS N TO CONCENTRATION, TO	T
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT		,000

RELATION OF LOAD TO STREAMFLOW

$\overline{\hspace{1em}}^{ imes}_{\hspace{1em}}$	LOAD UNCENSORED VALU 'LESS-THAN' VALUE		1,000 > \$	E - - -		——————————————————————————————————————
RELATION: LOG(L VALUES ALL VALUES	-	ELOW) + INT LOPE INT .14 -0.3	DS PER D			
SMOOTHED RELATIO			IN POUN	- -		-
	AMFLOW EXCEEDED D PERCENTAGE OF T T 25 PERC		ГОАБ	-	* * * * * * * * * * * * * * * * * * *	1,000
					STREAMFLOW, IN CUBIC FEET PER SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		
LOW FLOW HIGH FLOW	_	
\circ uncensored value \oplus \forall 'less-than' value \oplus \Diamond 'greater-than' value \oplus	ON, TER, AS N	- • o
	9.0 RA	-
TRENDS IN CONCENTRATION	ĖË	
VALUES NVALUES NWYS SLOPE	μ̈́ο	0 0
LOW FLOW 20 11 ND	0.4 0.4	⊕ ⊕ ⊕
HIGH FLOW 31 15 0	28	# # O
	CONCENTRATION. IN MILLIGRAMS PER LITER 7.0 7.0 8.0	
	Z 0.2	
	0.04	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

1.0

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

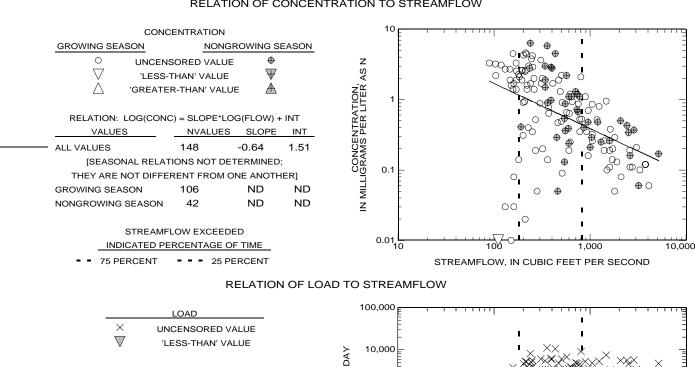
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	10,000
X UNCENSORED VALUE √ 'LESS-THAN' VALUE	¥ .and
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	B 1,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	100 X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	V V V V V V V V V V V V V V V V V V V
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			'	1		'	١	1						1	1 1		1
LOW FLOW HIGH FLOW	_			0			()									
○ UNCENSORED VALUE	AS N	2.0)		(0						
abla 'LESS-THAN' VALUE $ abla$	_ 7					0				C)						
riangle 'GREATER-THAN' VALUE $ riangle$	ΘË)								
	AT.	1.5	L									Ф					_
TRENDS IN CONCENTRATION	ΕÄ											Ψ					
VALUES NVALUES NWYS SLOPE	SEN		+					С)		- 0)					
LOW FLOW 16 10 ND	CONCENTRATION, IGRAMS PER LITER	1.0	_			(o c) () ()	⊕			⊕	Φ(<u> </u>	_
HIGH FLOW 35 14 0	98			#	•)					Φ `		
	\exists										\oplus	⊕		•			
	IN MILL	0.5	L	₩	+							•		⊕			_
	Z		•		+		+		\oplus^{\oplus})							
				Φ	- +		0					_	1				⊕
		0.0	<u> </u>									<u></u> `	<u> </u>	- +			\Box
			76	77 78	79 8	0 81	82	83	84	85	86	87	88	89 90	91	92	93


WATER YEAR

2.5

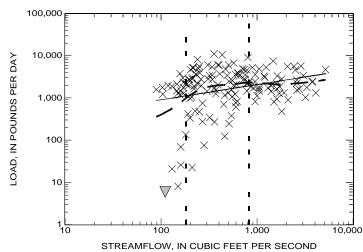
APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES **VALUES** SLOPE

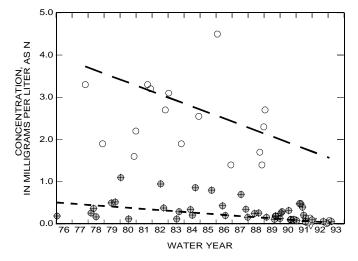
148


SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

ALL VALUES

LOW/FLOW

STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME **75 PERCENT** 25 PERCENT


CONCENTRATION

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

LUCLIELOW

_	LOW FLOW						
	O и	NCENSORE	D VALUE	⊕			
	▽ ,	VALUE	$\overline{\Psi}$				
	△ 'GF	REATER-THA	N' VALUE	\blacksquare			
	TREN	DS IN CONC	ENTRATI	ON			
	VALUES	NVALUES	NWYS	SLOPE			
	LOW FLOW	22	13	-0.142			
	HICH ELOW	11	16	-0.028			

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

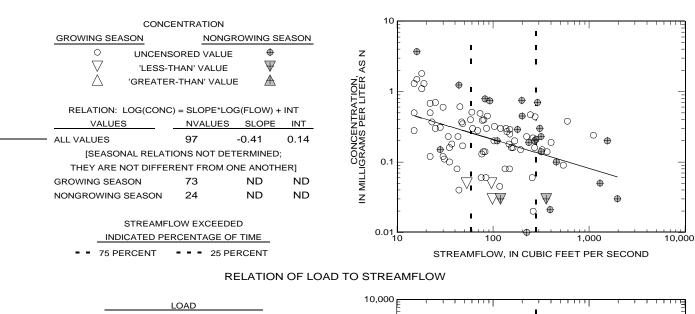
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

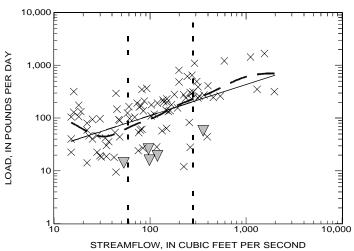
CONCI	ENTRATION				1 F	 			 	ш	1 1 1	ш
GROWING SEASON	NONGR	OWING SI	EASON		‡				_ 1			=
O LINCENS	ORED VALUE			z	‡			0	⊕ _I			_
	HAN' VALUE	₩.		4S I	-				4	,		-
, ^	R-THAN' VALUE	×		÷Ω.	-			⊕ ⊕				-
△ GREATER	C-ITIAN VALUE			힌민				Δ.	Ф Ф •	Ф		
DELATION LOGGONO		VEL 0140		₽ ∃			00	# ○	Ů .	Ψ		
RELATION: LOG(CONC				Ҡ╙				ф ф	⊕			
VALUES	NVALUES	SLOPE	INT	ΞŒ	0.1	0		~ ° ° %) O		0	-
ALL VALUES	86	0	ND	25	ļ.	O		~ **			0	=
[SEASONAL RELATI	ONS NOT DET	ERMINED		δÃ	t	0	∇	O TAME			-	_
THEY ARE NOT DIFFER	RENT FROM ON	IE ANOTH	ER]	00	-		⊕ 0	V W	(4)			_
GROWING SEASON	53	ND	ND	CONCENTR IN MILLIGRAMS PER	-		∇		₩ .		$\overline{\Psi}$	_
NONGROWING SEASON	33	ND	ND	2			·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, do	Φ.	•	
				=				00	₩ .	⊕		-
STREAMEL	OW EXCEEDE	D							ı			
INDICATED PE					0.01	0.1	1	 03	₱ \ _	100		ليو <u>ب</u> 1,000
					0.01		'		10			1,000
75 PERCENT	25 PE	RCENT				STREA	MFLOW, IN	I CUBIC FE	ET PER S	SECON	ID	
	PE	ΕΙ ΔΤΙΩΝ	IOFIC	AD TO S	TREAM	=1 (0)//						

RELATION OF LOAD TO STREAMFLOW

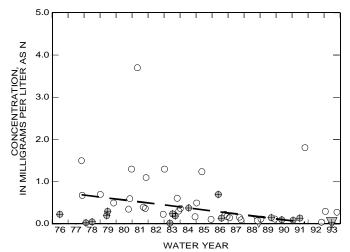
×	LOAD UNCENSORED V			>_	1000				1 1 1××	× -
RELATION: LOG(VALUES - ALL VALUES	(LOAD) = SLOPE*L0 NVALUES 86	OG(FLOW) SLOPE 0.91	+ INT INT -0.41	NDS PER DA	10			× ××, ××,	X	×
 SMOOTHED RELATION			OW	, IN POU	1		×		× × 1	-
	EAMFLOW EXCEED ED PERCENTAGE (NT 25 F			ГОАБ	0.01	0.1	1	×^× 10	I I 100	1,0
						STRE	AMFLOW, IN	CUBIC FEET	PER SECO	ND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

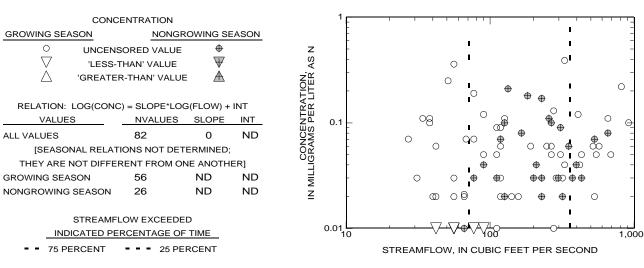
LOW FLOW	CONCENTR		HIGH FLOW	J.		0.5	1	1 1	- 1	1	ı	+	1	1	T	ı	-	T	1	-	
, ,	NCENSOREI LESS-THAN' REATER-THA	VALUE VALUE	*	_	⋖	0.4	_														_
TREN VALUES	DS IN CONC	ENTRAT	ION SLOPE	ENTRA	S PER LI	0.3	_														-
LOW FLOW HIGH FLOW	0 9	0 7	ND ND	ONOO	IN MILLIGRAMS PER LITER	0.2	_														_
					Z Z	0.1	_			+ +	+	⊕								7	₩
						0.0	₽ 76 7	7 78	79	80 81	82	83 8	4 8	5 86	87	88	89	90 9	91 9	92	у 93


APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

	LOAD ICENSORED V .ESS-THAN' VA							
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT								
VALUES	NVALUES	SLOPE	INT					
ALL VALUES	97	0.59	0.87					
SMOOTHED RELATION BI (SHOWN IF THERE ARE 1			W					
STREAMF	STREAMFLOW EXCEEDED							
INDICATED PE	ERCENTAGE C	F TIME						
■ ■ 75 PERCENT	25 P	ERCENT						


	CONCENTRATION										
LOW FLOW		HIGH FLOW									
0 0	INCENSOREI	ENSORED VALUE									
∇	▽ 'LESS-THAN' VALU										
△ 'G	△ 'GREATER-THAN' VAL										
TREN	DS IN CONC	ENTRAT	ION								
VALUES	NVALUES	NWYS	SLOPE								
— LOW FLOW	33	15	-0.047								
HIGH FLOW	16	10	ND								

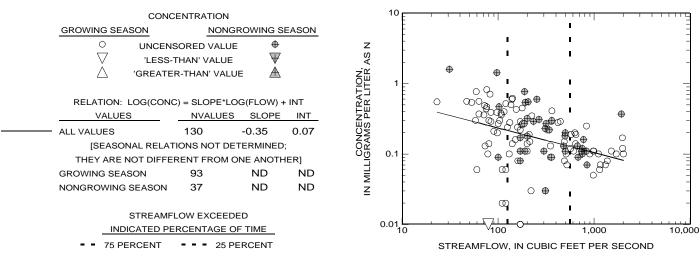
APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01388000 RAMAPO RIVER AT POMPTON LAKES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	1,000 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	<u> </u>
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	90 × 1× × × × × × × × × × × × × × × × × ×	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	Y X X X X X X X X X X X X X X X X X X X	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT		-
	10 100 1, STREAMFLOW, IN CUBIC FEET PER SECOND	,000


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRA	TION	C	0.5
O UNCENSORED ☐ 'LESS-THAN' \ ☐ 'GREATER-THAN	/ALUE ₩	⋖	0.4
TRENDS IN CONCE	ENTRATION NWYS SLOPE	ENTRATI	0.3
LOW FLOW 19 HIGH FLOW 16	7 ND 5 ND	CONCENTRATION, IN MILLIGRAMS PER LITER	0.2 –
		N MIL	
		C	0.0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000 X X X X X X X X X X X X X X X X X
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT 130 0.65 0.8 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100 TOO TOO TOO TOO TOO TOO TOO TOO TOO T
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION	2.0	
LOW FLOW HIGH FL		
○ UNCENSORED VALUE ⊕	 	_
√ 'LESS-THAN' VALUE √	<	
△ 'GREATER-THAN' VALUE A A A A B C A B C C C C C C C C C C C C	JON, TER,	
	50	
TRENDS IN CONCENTRATION	PERA 1.5	0
VALUES NVALUES NWYS SLOPE	ΠΩ Σσ	
LOW FLOW 39 13 NE	CONCEN IGRAMS F	_
HIGH FLOW 32 12 NE	0 R	0 0
	Ĕ	θ
	U W 0.5	
	Z	
	0.0	
	0.0	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

2.5

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

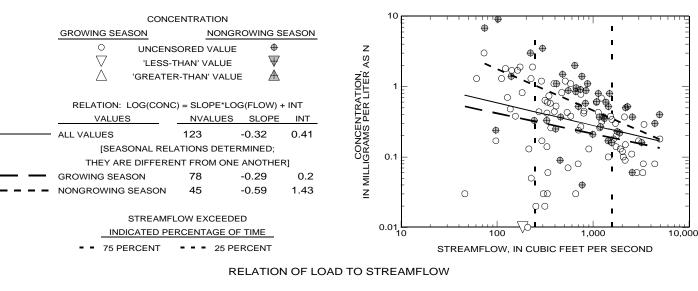
RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION				10 E		
GROWING SEASON	NONGR	OWING S	EASON		E	1	=
O UNCENS	ORED VALUE			z	+	ı ı	-
∵LESS-T	HAN' VALUE	\forall		AS	[
△ 'GREATER	R-THAN' VALUE	A		TION, LITER,	1 0		=
RELATION: LOG(CONC) = SLOPE*LO	G(FLOW) +	- INT	4-	Ē		=
VALUES	NVALUES	SLOPE	INT	NTR/ PER	t		_
ALL VALUES	73	0	ND	CONCE	-		-
[SEASONAL RELATI	ONS NOT DET	ERMINED	;	SA A	0.4		
THEY ARE NOT DIFFER	RENT FROM O	NE ANOTH	IER]		0.1		3
GROWING SEASON	51	ND	ND	∦	ŧ	0	=
NONGROWING SEASON	22	ND	ND	Z	Ŧ		=
STREAMFL INDICATED PER	OW EXCEEDE			0	0.01	1,000	10,000
75 PERCENT		RCENT			DE 4 1 4 5	STREAMFLOW, IN CUBIC FEET PER SECOND	

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW	W)+INT
	<u>σ</u> 0.78 σ
SMOOTHED RELATION BETWEEN LOAD AND FL (SHOWN IF THERE ARE 10 OR MORE VALUES)	FLOW SO TO THE STATE OF THE STA
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	_ ₋ _ ₋
	100 1,000 10,00

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION							ı	1 1	ı	1 1	ı	1	1 1	6	ı	1 1	ı	
LOW FLOW			HIGH FLOW	<u>'</u> z														
$\overline{}$	INCENSORED 'LESS-THAN'		₩	, AS	2.0	_								0				-
△ 'GI	REATER-THA	n' value	A	ATION, LITER														
TREN	NDS IN CONC	ENTRAT	ION	IRAT ER L	1.5									0				-
VALUES	NVALUES	NWYS	SLOPE	CONCENTRA										0				
LOW FLOW	16	6	ND	AMO MA	1.0	_								0				_
HIGH FLOW	14	4	ND	9.50 8.01														
				<u>Z</u>	0.5	_									(٥ ر)	
																	0	
					0.0	76 77	78 79	80 8	81 82	2 83	84 8	5 86	87	88 8	9 90	91 [∨]	92	93

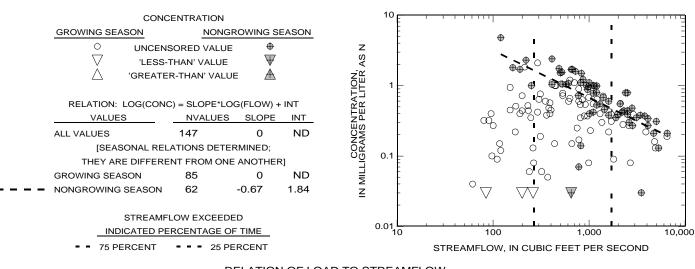
STREAMFLOW, IN CUBIC FEET PER SECOND

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100,000
ALL VALUES 123 0.68 1.14	1,000
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	100 × × × 1
75 PERCENT 25 PERCENT	10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

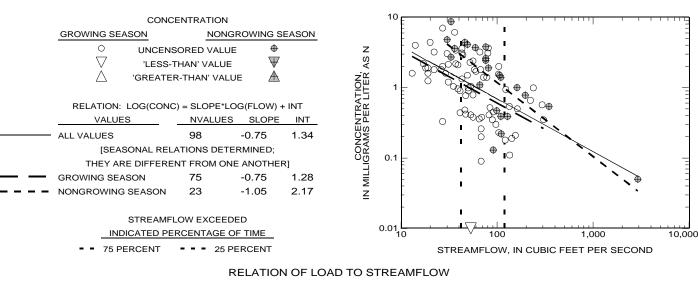
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 WATER YEAR

					10	
	CONCENTR	ATION			10	
LOW FLOW			HIGH FLOW			0
Ο υ	NCENSOREI	D VALUE	⊕	Z Ø	8	
\triangle	LESS-THAN'	VALUE	$\overline{\Psi}$	~;~	Ŭ	
△ 'GI	REATER-THA	N' VALUI	■ ▲	NO TE		0
				Ę.i.	6	=
TREN	IDS IN CONC	ENTRAT	ION	X X	-	
VALUES	NVALUES	NWYS	SLOPE	MOEN		
LOW FLOW	25	10	ND	AM	4	_
HIGH FLOW	27	12	ND	O B		
				Ē		00
				N MI	2	0000

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW


LOAD X UNCENSORED VALUE	100,000
VIESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 147 0.99 0.38	¥ 10,000 × × × × × × × × × × × × × × × × ×
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	99 1,000 X X X X X X X X X X X X X X X X X X
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	100
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

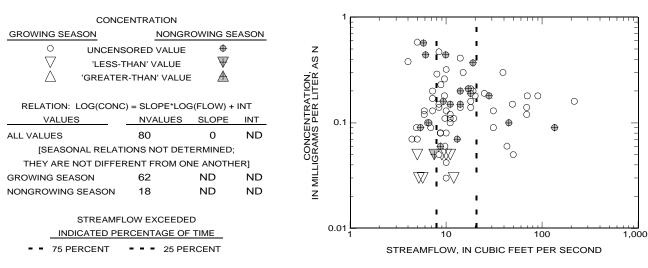
						5.0 🗖										
	CONCENTR	ATION				3.0	- 1 1	ı	1	 	ı	1		1	1	
LOW FLOW			HIGH FLOW		-											
<u> </u>	NCENSORE	D VALUE			Z S Z	4.0	-									
, ,	LESS-THAN	VALUE	$\overline{\Psi}$		Z.K.											
△ 'GF	REATER-THA	N' VALUI	E A		ĎΨ											
					ZZ 3	3.0	-									
TREN	DS IN CONC	ENTRAT	ION		产产											
VALUES	NVALUES	NWYS	SLOPE	į	Ä.S.					0						
LOW FLOW	31	12	ND		CONCEI GRAMS ™	2.0 -	-			Ü						
HIGH FLOW	34	14	0		OS S			8					0			
					\exists											
					₫ 1	1.0	- c	, 0								
					Z			\tilde{a}	⊕							

78 79 80 81 82 83 84 85 86 87 88 89 90 91 WATER YEAR [NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

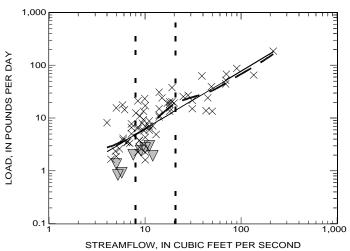
LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	10,000
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT ALL VALUES 98 0.25 2.07 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	TOAD, IN POUNDS PER DA
75 PERCENT 25 PERCENT	10 100 1,000 10,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

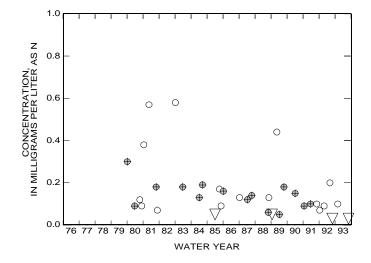

CONCENTRATION			
LOW FLOW HIGH FLOW	_		O
○ UNCENSORED VALUE ⊕	A N N	8 –	<u>-</u>
C 'LESS-THAN' VALUE			
			0
	¥.	6 –	0 _
TRENDS IN CONCENTRATION	똤		
VALUES NVALUES NWYS SLOPE	CONCENTRATION, IGRAMS PER LITER		0
LOW FLOW 30 14 0	NA NA	4 —	•
HIGH FLOW 16 11 ND	SS		0 0
	3		
	N MILL	2 –	
	≥		0 , 60
		0 76	<u> </u>
		76	7 11 10 13 00 01 02 03 04 03 00 01 00 09 90 91 92 93

WATER YEAR

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

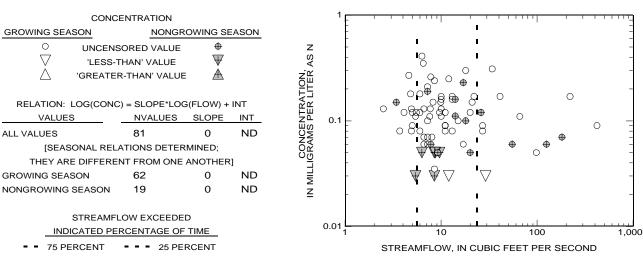

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

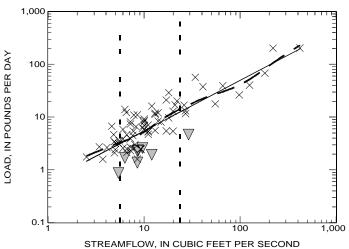


RELATION OF LOAD TO STREAMFLOW

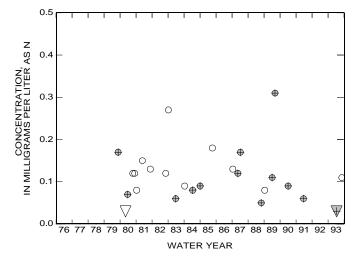
	LOAD				1,000
	× UNCENSORED				Ė
	V 'LESS-THAN'	VALUE		DAY	100
RELATION	: LOG(LOAD) = SLOPE*	LOG(FLOW)	+ INT	_	Ē
VALU	ES NVALUES	SLOPE	INT	PER	-
——— ALL VALUES	80	1.09	-0.29	NDS	-
— SMOOTHED F	RELATION BETWEEN LO	AD AND FLO	w	POUNDS	10
(SHOWN IF TH	HERE ARE 10 OR MORE	VALUES)		Z	E
	STREAMFLOW EXCEE	EDED		OAD	1
_IN	DICATED PERCENTAGE	OF TIME		_	Ē
 75 l	PERCENT = = = 25	PERCENT			


CONCENTRATION							
LOW FLOW			HIGH FLOW				
О U	NCENSORE	O VALUE	⊕				
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$				
△ 'GF	REATER-THA	N' VALUE	■ ▲				
TREN	DS IN CONC	ENTRAT	ION				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	20	10	ND				
HIGH FLOW	16	11	ND				

APPENDIX 15. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL AMMONIA 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

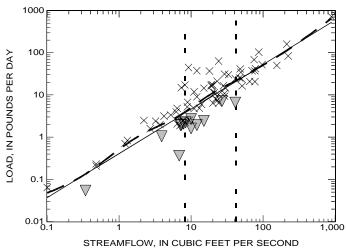
RELATION OF CONCENTRATION TO STREAMFLOW



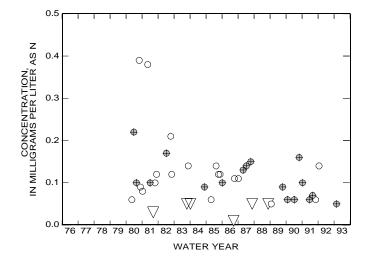
RELATION OF LOAD TO STREAMFLOW

					1,000	
	LOAD				1,000	
×	UNCENSORED V	ALUE			E	
∇	'LESS-THAN' VA	ALUE		>	F	
				DAY	100	
RELATION: LOG(LO	OAD) = SLOPE*LO	OG(FLOW)	+ INT	22	E	
VALUES	NVALUES	SLOPE	INT	PER	-	
 ALL VALUES	81	0.96	-0.22	SONC	-	
				Š	10	
 SMOOTHED RELATION	N BETWEEN LOAD	AND FLO	W	Ь	E	
(SHOWN IF THERE AR	E 10 OR MORE V	ALUES)		Z	-	
				OAD,		,
STREA	MFLOW EXCEED	ED		ò	1 =	
INDICATED	PERCENTAGE C	OF TIME		_	F	
 75 PERCENT 	Γ = = = 25 P	ERCENT			-	

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	\blacksquare
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	13	9	ND
HIGH FLOW	13	11	ND


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

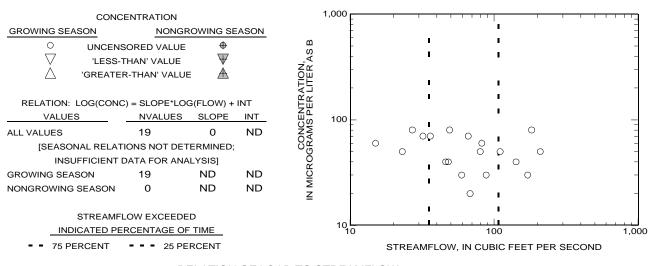
RELATION OF CONCENTRATION TO STREAMFLOW


CONC	CENTRATION			1		, , , , , , , , , , , , , , , , , , , 	
GROWING SEASON O UNCEN 'LESS-		VING SEASO ⊕ ₩ Æ	ION, TER AS N		• • • • • • • • • • • • • • • • • • •		
RELATION: LOG(CON	,	LOW) + INT	ATRAT PER LI	.1 ⊢	8 0000 0000		
ALL VALUES [SEASONAL RELATION SEASONAL RELAT	81	0 NI	CONCENTR GRAMS PER	5.1 F	8		
THEY ARE NOT DIFFE			_	ļ	V 🕨	₩ • ₩ • •	
GROWING SEASON	59 N	ND NI	⊒ ⊠ Z	-	\triangle	\longleftarrow	
NONGROWING SEASON	22	ND NI	Z	-	•	ı	
	LOW EXCEEDED ERCENTAGE OF TIE	ME	0.	.01	1	1 10 100	· · · · · · · · · · · · · · · · · · ·
75 PERCENT	= = 25 PERC	ENT			STREAMFLOW, IN CUI	BIC FEET PER SECONE	

RELATION OF LOAD TO STREAMFLOW

		LOAD				1000	
	×	UNCENSORED \	/ALUE			F	
	∇	'LESS-THAN' VA	ALUE		>_	100	
	RELATION: LOG(LO	DAD) = SLOPE*LO	OG(FLOW)	+ INT	R DA	Ē	
	VALUES	NVALUES	SLOPE	INT	PER	10=	
	ALL VALUES	81	1.05	-0.38	SON		
. <u>—</u>	SMOOTHED RELATION			W	N POUNDS	1	
			,		OAD, I	-	>
		MFLOW EXCEED			9	0.1	_
		PERCENTAGE C					\vee
	 75 PERCENT 	= = 25 F	PERCENT			Γ.	

	CONCENTRATION						
LOW FLOW			HIGH FLOW				
O U	NCENSOREI	D VALUE	⊕				
,	LESS-THAN'	VALUE	$\overline{\Psi}$				
△ 'GF	REATER-THA	N' VALUE	■ ▲				
TREN	DS IN CONC	ENTRAT	ION				
VALUES	NVALUES	NWYS	SLOPE				
LOW FLOW	25	12	ND				
HIGH FLOW	17	10	ND				


Appendix 16 Total boron

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

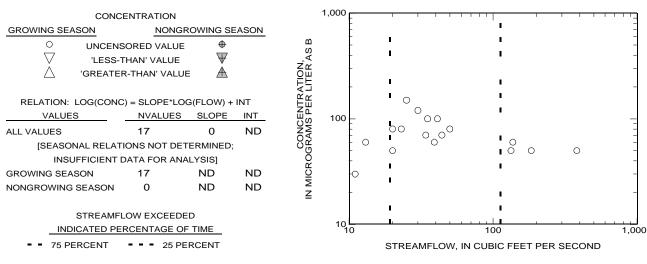
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD		
>	UNCENSORED \	VALUE	
7	LESS-THAN' V	ALUE	
RELATION:	LOG(LOAD) = SLOPE*LO	OG(FLOW)	+ INT
VALUE	S NVALUES	SLOPE	INT
ALL VALUES	19	0.85	-0.31
SMOOTHED RE	ELATION BETWEEN LOAI	D AND FLC	W
(SHOWN IF TH	ERE ARE 10 OR MORE V	'ALUES)	
	STREAMFLOW EXCEED	DED	
IND	ICATED PERCENTAGE (OF TIME	
75 PI	ERCENT = = 25 F	PERCENT	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		100	00
LOW FLOW HIGH FLOW	ATION, LITER AS B	80	30 − ⊕ ○
TRENDS IN CONCENTRATION	ENTRA PER LI	60	50 - • • • •
VALUES NVALUES NWYS SLOPE LOW FLOW 4 3 ND HIGH FLOW 5 5 ND	CONCENTR MICROGRAMS PER	40	⊕
	IN MICRO	20	⊕ -
	_	0	0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 9

STREAMFLOW, IN CUBIC FEET PER SECOND

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

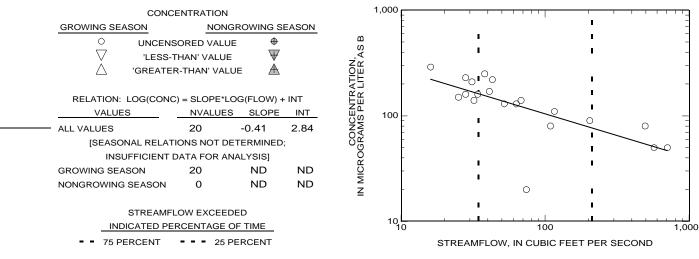
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES NVALUES NVALUES 17 0.93 -0.32 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENT 100 VY O STREAMFLOW EXCEEDED INDICATED PERCENT 25 PERCENT 25 PERCENT	LOAD X UNCENSORED VALUE VLESS-THAN' VALUE		1,000	I I	
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	· · · · · · · · · · · · · · · · · · ·	*	PER DA	1 1	
(SHOWN IF THERE ARE 10 OR MORE VALUES) STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	ALL VALUES 17 0.93	-0.32	S F		
INDICATED PERCENTAGE OF TIME		LOW	N 10	· ××××	
	INDICATED PERCENTAGE OF TIME	<u>-</u> r	LOAD		-

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		100		ı	1 1	-	ı	ı	1	1	ı	1		1	1	
LOW FLOW HIGH FLOW ○ UNCENSORED VALUE ⊕ ✓ 'LESS-THAN' VALUE ₩ ✓ 'GREATER-THAN' VALUE ★	TION, TER AS B	80 -	-													
TRENDS IN CONCENTRATION VALUES NVALUES NWYS SLOPE	S PER LI	60	-					#	Ð			⊕	•	Φ		_
LOW FLOW 2 2 ND HIGH FLOW 4 4 ND	CONCENTRATION MICROGRAMS PER LITER	40 -	-			0						•	·			_
	N MICA	20	-													=
		0	76 77 7	78 79	80	81 8	32 8	3 84	85	86	87	88	89	90 9	1 9	2 93

STREAMFLOW, IN CUBIC FEET PER SECOND

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD				1,000	1 1			
	×	UNCENSORED V	ALUE			E			ī	3
	V	'LESS-THAN' VA	LUE		>	-			1 .	, -
_	RELATION: LOG(VALUES	LOAD) = SLOPE*LO NVALUES	SLOPE	INT	S PER DA`	100	1	×		
—— А	ALL VALUES	20	0.59	0.57	ğ	F	X	XX X	I	=
	SMOOTHED RELATIONSHOWN IF THERE A)W	, IN POUI	10 =		`	1	-
		EAMFLOW EXCEED ED PERCENTAGE C			LOAD	-	, ,	×	' !	- - - -
	.or Ender	201				10		100		1,000
							STREAM	FLOW, IN CUBIC FE	ET PER SECON	D

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			500	1 1	ı	1	ı	ı	1	ı	1	ı	ı	ı	1 1	1	ı	ı	
LOW FLOW	NCENSORE	D VALUE	HIGH FLOW	<u>/</u> a s	100																
\bigvee_{λ}	'LESS-THAN'	VALUE	$\overline{\Psi}$	ATION, LITER AS B	400	_															
TREN	IDS IN CONC	ENTRAT	ION	CONCENTR MICROGRAMS PER	300	_		(0												_
VALUES	NVALUES	NWYS	SLOPE	AS AS								0									
LOW FLOW	7	7	ND	Z Z	200	_						_			0						_
HIGH FLOW	3	3	ND	966						0										С	
				CRC						0			0	(0					_	
				M	100	_															4
				Z							4)									
							+	₽									•	₽			
					0																
						76 77 7	78 7	9 80	81	82	83	8 84	4 8	5 8	8 8	7 88	89	90	91	92 !	93

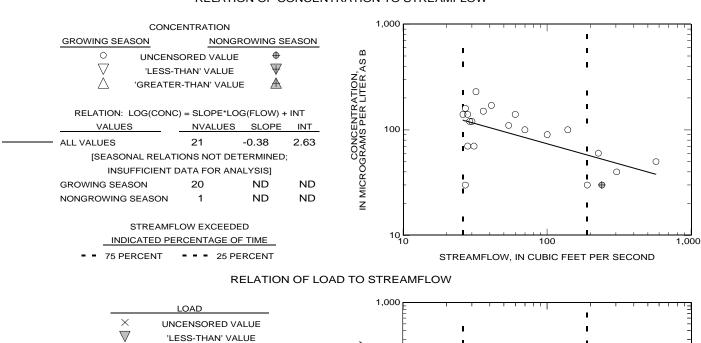
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD		
_	\bigvee	UNCENSORED \ 'LESS-THAN' V		
	N: LOG(LOAD) = SLOPE*L0 NVALUES	OG(FLOW) SLOPE	+ INT INT
LL VALUES		2	ND	ND
		ON BETWEEN LOAI RE 10 OR MORE V		W
	STRE	EAMFLOW EXCEED	DED	
	NDICATE PERCEI	<u>D PERCENTAGE (</u> NT = = = 25 F	PERCENT	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION				'	'	'	' '			- 1	- 1		- 1					- 1	- 1	
LOW FLOW			HIGH FLOW	В																		
٥ ر	NCENSORE	D VALUE	⊕	SY	20	_) €	∌ –
∇	LESS-THAN	VALUE	$\overline{\Psi}$	Žά																		
△ 'Gı	REATER-THA	AN' VALUE	■ ▲	ATION, LITER AS																		
				R'R L'A	15	L																_
TREN	IDS IN CONC	ENTRAT	ION	EH																		
VALUES	NVALUES	NWYS	SLOPE	ASC NO.																		
LOW FLOW	1	1	ND	CONCENTR MICROGRAMS PER	10	_																_
HIGH FLOW	1	1	ND	Oo																		
				C K																		
				Σ	5	_																_
				Z																		
					0	76 7	7 78	3 79	80	81	82	83 8	34 8	35 8	86	87	88	89	90	91	92	93
														'								

WATER YEAR

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

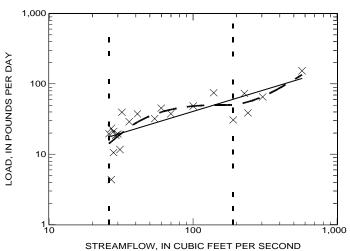
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT
VALUES NVALUES SLOPE INT

SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

ALL VALUES


LOW FLOW

HIGH FLOW

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

ND

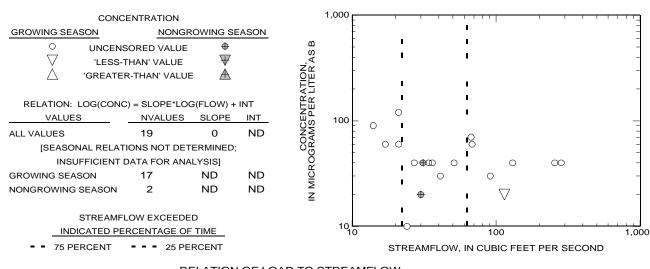
ND

250

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
٥ ر	JNCENSOREI	VALUE	⊕
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$
	REATER-THA	N' VALUE	A
TRE	NDS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE

4

4

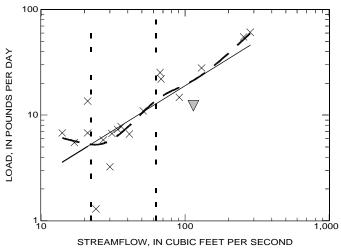

CONCENTRATION IN MICROGRAMS PER LITER	150	_			0	
IN MICROG	50 -	_	Ф Ф	+		

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

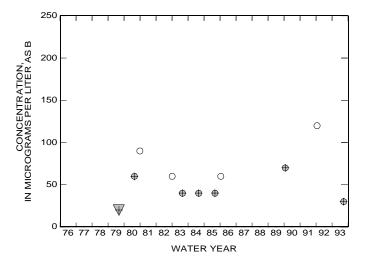
APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

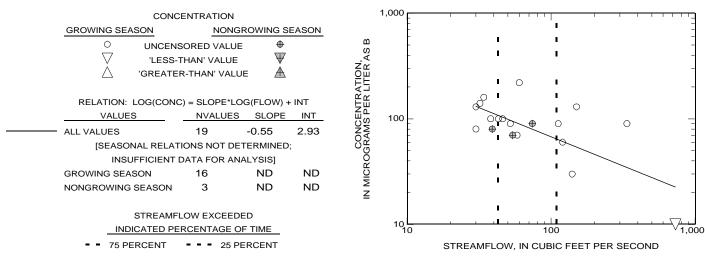


RELATION OF LOAD TO STREAMFLOW


		LOAD				
	\times un	ICENSORED V	ALUE			
	\(\sigma\) 'L	ESS-THAN' VA	ALUE		;	-
DEI ATI	ON: LOG(LOAE)) _ SI OPE*I (OG(ELOW)	+ INIT	Č	2
	`	,	` ,	T 1111		<u>r</u>
VAI	LUES	NVALUES	SLOPE	INT	ā	7
ALL VALUE	S	19	0.85	-0.42	() 	20 N 20 N 1
SMOOTHEE	O RELATION BE	TWEEN LOAD	O AND FLO	W	Č	รี
(SHOWN IF	THERE ARE 1	O OR MORE V	ALUES)		2	<u>z</u>
					٥	ļ
	STREAMF	LOW EXCEED	ED		(Ď.

INDICATED PERCENTAGE OF TIME

- 75 PERCENT - - 25 PERCENT


CONCENTRATION										
LOW FLOW			HIGH FLOW							
Ο υ	NCENSORE	D VALUE	⊕							
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$							
△ 'GF	REATER-THA	N' VALUE	\blacksquare							
TREN	IDS IN CONC	ENTRAT	ION							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	4	4	ND							
HIGH FLOW	7	7	ND							

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

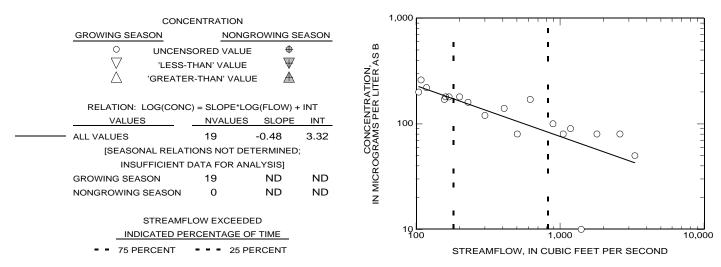
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD				1,000	Г		· · · · · ·	Т	
	×	UNCENSORED V				E		ı	·		3
	V	'LESS-THAN' VA	LUE		Α	-		ı	ı		-
	RELATION: LOG	G(LOAD) = SLOPE*LO	G(FLOW)	+ INT	iR D	=		1			=
	VALUES	NVALUES	SLOPE	INT	PE	-		ī	ī	×	1
——— ALL	VALUES	19	0.45	0.67	DS				- i	^	
					S	100		ı	- ,	×	=
— - sм	OOTHED RELAT	ION BETWEEN LOAD	AND FLO	W	Ю	-		×		/ /	
(SH	IOWN IF THERE	ARE 10 OR MORE VA	ALUES)		Z	Ė		-	· ·	•	\ \
					Ó,	-		ı			∇ -
	STF	REAMFLOW EXCEED	ED		Ŏ.	-		X			-
	INDICAT	TED PERCENTAGE O	FTIME		_	-	,		, ×		_
	- 75 PERCE	ENT = = 25 PI	ERCENT				,	, ×	1		
						10		Х 			
						10 10			100		1,000
							STREA	AMFLOW, I	N CUBIC FE	EET PER SEC	OND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTR	ATION			200	'	ı	1		ı	- 1	ı	I	1	1 1	ı	1	ı	1	1
LOW FLOW			HIGH FLOW	Ф																
O U	NCENSORE	D VALUE	⊕	YS I	200	L														
	'LESS-THAN'	VALUE	$\overline{\Psi}$	ATION, LITER AS																
△ 'GI	REATER-THA	N' VALUE	■ ▲	읟																
				RA	150	L			0	I										
TREN	IDS IN CONC	ENTRAT	ION	Ϋ́Ξ				⊕			0	0								
VALUES	NVALUES	NWYS	SLOPE	AS AS				Ψ				0								
LOW FLOW	6	5	ND	CONCENTR OGRAMS PER	100	L							0							_
HIGH FLOW	6	6	ND	966		⊕		•	₽	0									0	
				SRO															0	•
				MICR	50	L														₩
				Z													⊕			
															\	7	Ψ			
					0										\					
					_	76	77 78	3 79	80	81	82 8	33 84	85	86	87	88 8	9 9	91	92	93

WATER YEAR

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	10,000
× UNCENSORED VALUE "LESS-THAN' VALUE	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	1,000 × × × × × =
ALL VALUES 19 0.52 1.05	SOZ X X X
— SMOOTHED RELATION BETWEEN LOAD AND FLOW	NO X X X
(SHOWN IF THERE ARE 10 OR MORE VALUES)	100 × 1 ×
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	9
75 PERCENT 25 PERCENT	100 1,000 10,0
	'100 1,000 10,0 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

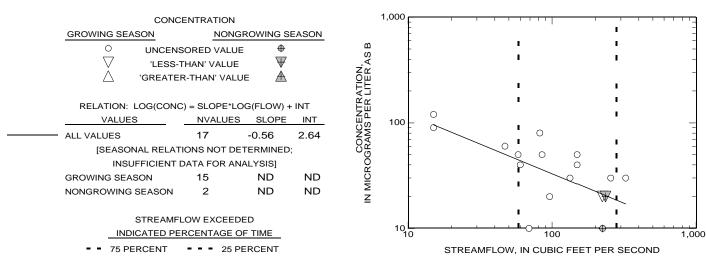
	CONCENTE	RATION			500	1 1	ı	1 1	ı	1 1	- 1	1	1 1		1		1	
	INCENSORE LESS-THAN REATER-THA	' VALUE	HIGH FLOW	ATION, LITER AS B	400	_												_
TDEN	IDS IN CONC	CENTRAT	ION	TRA ER 1	300	-												_
VALUES LOW FLOW HIGH FLOW	NVALUES 6 7	NWYS 6 7	SLOPE ND ND	CONCENTR MICROGRAMS PER	200	-		0	0	0		0						0
				N N	100	_,	4	, ⊕		⊕	⊕				+	⊕		-
					0	76 77	78 79	80 8	81 82	83	84 8	5 86	87	⊕ı 88 :			1 92	93

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CON	CENTRATION				1,000 F	 	
GROWING SEASON	NONG	ROWING SE	ASON		F		· -
O UNCEN	SORED VALUE	+		SB	F		·]
√ 'LESS	THAN' VALUE	\forall		,. Y	+		I -
	R-THAN' VALU	E A		ATION, LITER A3	t		-
				£5	-		-
RELATION: LOG(CON	C) = SLOPE*LC	G(FLOW) +	INT	ER			1
VALUES	NVALUES	SLOPE	INT	E P	100 -	-	· _
ALL VALUES	1	ND	ND	CONCENTR IN MICROGRAMS PER	ŧ		
[SEASONAL RELA	TIONS NOT DE	TERMINED;		28	ţ		: =
INSUFFICIENT	DATA FOR AN	ALYSIS]		Õ	-		: -
GROWING SEASON	0	ND	ND	5	-		-
NONGROWING SEASON	1	ND	ND	Σ			
				=			•
STREAM	LOW EXCEED	ΕD			40		
INDICATED PI	ERCENTAGE O	F TIME			10 L 0.1	1 10	100
75 PERCENT	25 PI	ERCENT				STREAMFLOW, IN CUBIC FEET PE	R SECOND


RELATION OF LOAD TO STREAMFLOW

	LOAD	1	F			
$\overline{\mathbb{V}}$	UNCENSORED VALUE 'LESS-THAN' VALUE	× ∀				
RELATION: L VALUES	OG(LOAD) = SLOPE*LOG(FLOW) + INT NVALUES SLOPE INT	PER DA				ı -
ALL VALUES	1 ND ND	Ω Q N O.1				1 _
	ATION BETWEEN LOAD AND FLOW RE ARE 10 OR MORE VALUES)	<u>N</u>				! !
INDIC	STREAMFLOW EXCEEDED CATED PERCENTAGE OF TIME	LOAD,	-	∇		
75 PEF	RCENT 25 PERCENT	0.01	 D.1	1	10	100
				STREAMFLOW	, IN CUBIC FEET PER	SECOND

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

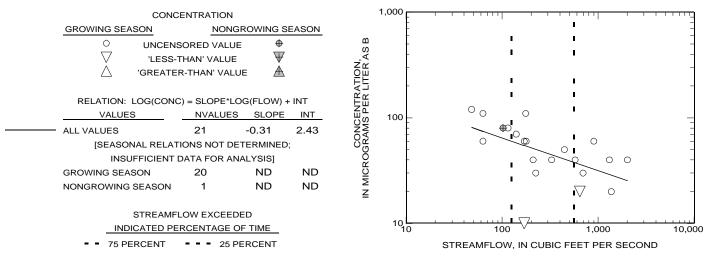
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

$oxed{ imes} oxed{ imes} oxed{ imes}$ UNCENSORED VALUE $oxed{ imes}$ 'LESS-THAN' VALUE	100
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW VALUES NVALUES SLOPE	V) + INT
ALL VALUES 17 0.44	0.37 80 10 × × 1
SMOOTHED RELATION BETWEEN LOAD AND FL (SHOWN IF THERE ARE 10 OR MORE VALUES)	Z -
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	Popular in the second s
	10 100 1,000 STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


CONCENTRATION		250		1 1	1 1	1 1	- 1	1 1	'	1 1	1 1	
LOW FLOW	HIGH FLOW	ω										
O UNCENSORED VALUE	Φ (S 200	_									_
'LESS-THAN' VALUE	₩ zi	2										
	± A F	Ë										
	£	_ 150	_									_
TRENDS IN CONCENTRATION	ON Z	2										
VALUES NVALUES NWYS	SLOPE 0	დ ∑		(0							
LOW FLOW 4 4	ND Ö	₹ 100	_									_
HIGH FLOW 1 1	ON Z SLOPE SU ND O	90					0					
						C)					
		<u>₩</u> <u>0</u> 50	_		0		,					_
		Z								⊕		
		0	76 77 7	8 79 80	81 8	2 83	84 85	5 86	87 88	89 90	91 9	92 93

WATER YEAR

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

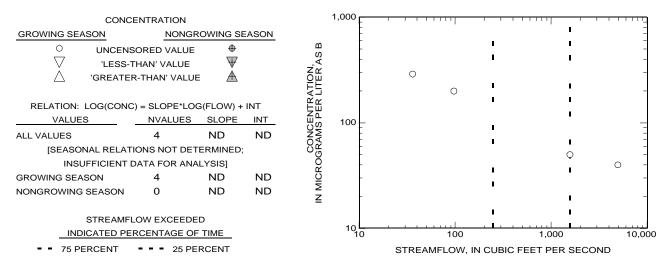
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD		1,000			
× UNCENSORED VALUE		E	ı		× ±
VLESS-THAN' VALUE		<u> </u>	1	ı ×	
RELATION: LOG(LOAD) = SLOPE*LOG(FLOV	i i	100 –		×	×
VALUES NVALUES SLOP	E INT	<u> </u>	Ī	∇	3
ALL VALUES 21 0.69	0.16		×××××	, i	3
SMOOTHED RELATION BETWEEN LOAD AND F	LOW	<u> </u>	⋌	Ī	-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	<u> </u>	10	-	∇	
STREAMFLOW EXCEEDED	(5 -	·	•	=
INDICATED PERCENTAGE OF TIME	_	-	-	ı	_
75 PERCENT 25 PERCEN	Т	-	I	I	-
		10	100	1,000	0 10,000
			STREAMFLOW,	IN CUBIC FEET PER	R SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTE	RATION			200	1 1	1 1	1	1		,	1	'	1	1 1	- 1	'	' '
LOW FLOW			HIGH FLOW	Ф														
O U	NCENSORE	D VALUE	⊕	1S.	200	_												_
	LESS-THAN	I' VALUE	$\overline{\Psi}$	źα														
△ 'GI	REATER-TH	an' value	\blacksquare	ATION, LITER AS														
				R L L A	150	_												_
TREN	IDS IN CON	CENTRAT	ON	22														
VALUES	NVALUES	NWYS	SLOPE	AS AS					0									
LOW FLOW	5	5	ND	Z AN	100	_		0										_
HIGH FLOW	7	6	ND	CONCENTR OGRAMS PER				(0				0					
				MICR	50										0	→		
				≥ <u>Z</u>	50	_	Φ.		4	• •					\oplus			
							\Rightarrow									\oplus		
					0	76 77 7	8 70 8	0 8	1 82	83 8	34 8	5 8	3 8	7 88	3 80	an c	1 0	2 93
						, , , , ,	0 19 0	0	. 02	05 (J- U	5 0		, 00	, 09	JU 3	. 3	_ 33

WATER YEAR

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

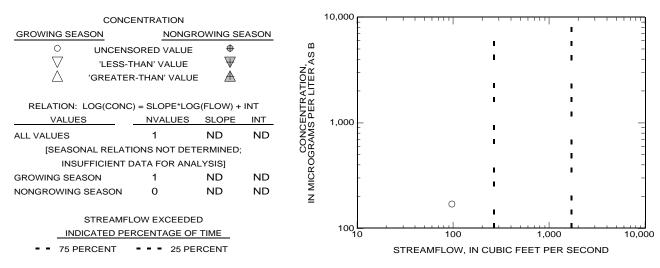
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

					0	0			
	LOAD				10,000		- 	 	
×	UNCENSORED 'LESS-THAN' V			Α	- - -		1	! ! !	
RELATION: LOG(L	.OAD) = SLOPE*L NVALUES	OG(FLOW)	+ INT INT	PER D	1,000			I -	× _
ALL VALUES	4	ND	ND	JNDS	E			*	=
SMOOTHED RELATIO	N BETWEEN LOA	D AND FLO	w	PO	-		i	1	-
(SHOWN IF THERE AF	RE 10 OR MORE \	/ALUES)		Ž Ž	100	×	•	1	
STRE	AMFLOW EXCEE	DED		-0 A	Ė	×	i	•	=
INDICATE	D PERCENTAGE	OF TIME		_	-			ı	-
 75 PERCEN 	T 25	PERCENT			-		1	1	-
					10	100	1,	000	10,000
						STREAMFLOW,	IN CUBIC FEET I	PER SECO	ND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTRATION					'	1		1	!	' '	1	1		'	- 1		ı	- 1	- 1	
LOW FLOW			HIGH FLOW	Ф																	
<u> </u>	NCENSORE	D VALUE	<u>+</u>	S ^A	400	_															
,	LESS-THAN'	VALUE	$\overline{\Psi}$	R,X																	
△ 'GF	REATER-THA	'N' VALUE	■ ▲	ATION, LITER,																	
				PER 1	300	_			0												_
	IDS IN CONC			N. N.					Ŭ												
VALUES	NVALUES	NWYS	SLOPE	SE																	
LOW FLOW	2	2	ND	Z Z	200	_													0		_
HIGH FLOW	1	1	ND	CONCE																	
				MICRO																	
				Σ	100	_															_
				Z																	
								\oplus													
					0	76 7	7 78	70 8	30 81	1 82	83	84	85	86	87	88	80	an d	11 0	12 (33
						10 1	, , ,	13 6	0 0	1 02	. 03	04	03	00	07	00	UÐ	30 8	, ,	٠ ـ ١	,,,

WATER YEAR

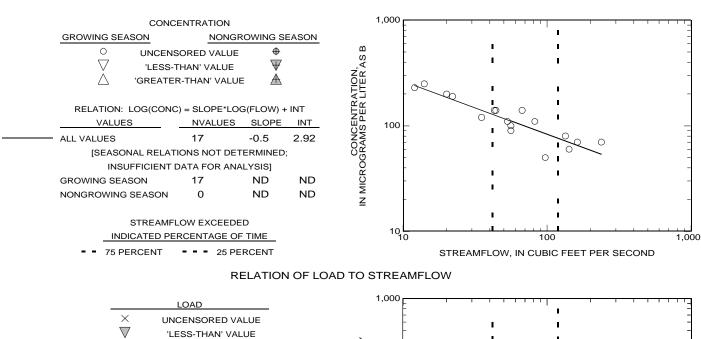
APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

						1,000			
_		LOAD				.,,,,,			' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	\times	UNCENSORED \	/ALUE			ļ.		•	. 1
	∇	'LESS-THAN' V	ALUE			-		Ī	• -
	•	2200			≻	-			-
RELATIO	N: LOG(L	OAD) = SLOPE*L0	OG(FLOW)	+ INT	ر 7				_ =
VALU	•	NVALUES	SLOPE	INT	Ë	-			-
ALL VALUES		1	ND	ND	DS I				
ALL VALUES		'	ND	ND	Σ	100 –			I
					Ž	IOOE	X	I	3
SMOOTHED	RELATIO	N BETWEEN LOA	D AND FLC	W	P	-		i	
(SHOWN IF T	HERE AR	E 10 OR MORE V	'ALUES)		Z	Ę			.]
					Ď.	-		•	. 4
	STRE	AMFLOW EXCEED	DED		O A	-			•
10		D PERCENTAGE (ĭ			ı	
						<u> </u>			-
 75	PERCEN	T = = = 25 F	PERCENT					I	ı
						10	100	1,000	10,000
							STREAMFLOW,	IN CUBIC FEET PER	SECOND


TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION LOW FLOW UNCENSORED VALUE UNCENSORED VALUE UNCENSORED VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	1
○ UNCENSORED VALUE	
○ UNCENSORED VALUE	1
	'
V 'LESS-THAN' VALUE ₩ Ζα	
V 'LESS-THAN' VALUE ♥ Z'Œ O U GREATER-THAN' VALUE ★ U E U O U O U O U O U O U O U	
∢	_
TRENDS IN CONCENTRATION	
VALUES NVALUES NWYS SLOPE LOW FLOW 1 1 ND ONE 100 - 1	
LOW FLOW 1 1 ND 연구 100 -	_
HIGH FLOW 0 0 ND	
$\frac{\aleph}{\aleph}$	
\tilde{\tilde{\tilde{\tilde{V}}}} \sqrt{50} \-	_
<u>Z</u>	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9	2 03

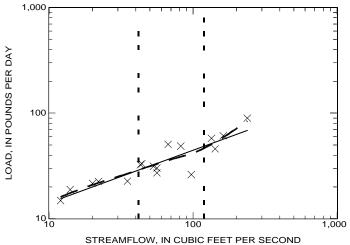
APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01391500 SADDLE RIVER AT LODI, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

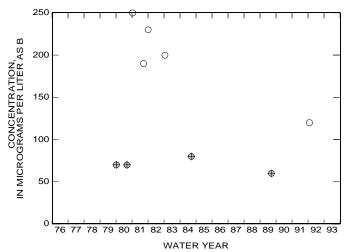
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT

VALUES NVALUES SLOPE INT


ALL VALUES 17 0.5 0.65

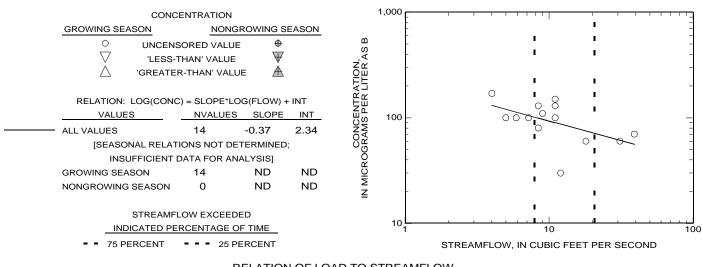
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED

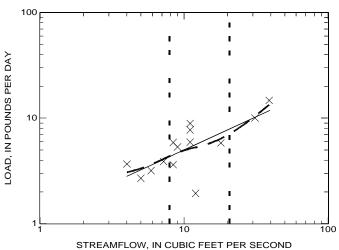

INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

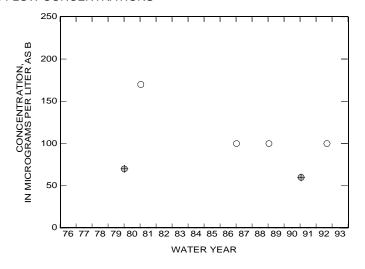
	CONCENTRATION	
LOW FLOW		HIGH FLOW
° ∇ Δ	UNCENSORED VALUE 'LESS-THAN' VALUE GREATER-THAN' VALU	⊕ ₩ Æ
TRI	ENDS IN CONCENTRAT	ION


TRENDS IN CONCENTRATION									
VALUES	NVALUES	NWYS	SLOPE						
LOW FLOW	5	4	ND						
HIGH FLOW	4	3	ND						

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

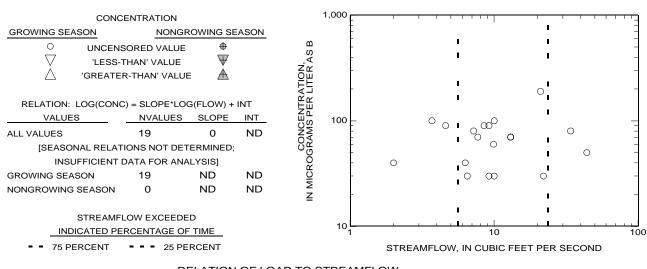

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



RELATION OF LOAD TO STREAMFLOW

		LOAD				100	ı		
		ICENSORED \ .ESS-THAN' V			λΑΥ	- - -			
RELA	ATION: LOG(LOAI	O) = SLOPE*LO	OG(FLOW)	+ INT	_	Ī			
<u></u>	VALUES	NVALUES	SLOPE	INT	PER	-			
——— ALL VAL	UES	14	0.63	0.07	SONDO	10_			
	HED RELATION B	ETWEEN LOAI	D AND FLO	W	PO	-			
(SHOWN	N IF THERE ARE 1	0 OR MORE V	ALUES)		Š			>	× .
	STREAM	LOW EXCEED	DED		OAD	-		ŕ	X
	INDICATED P	ERCENTAGE (OF TIME		_	-			, ,
	75 PERCENT	= = 25 F	PERCENT						


	CONCENTR	ATION	
LOW FLOW		HIGH FLOW	
O UI	NCENSORE	O VALUE	⊕
7	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	A
TREN	DS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	4	4	ND
HIGH FLOW	2	2	ND

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

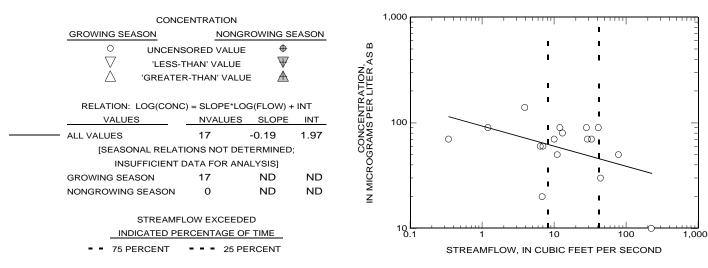
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

		LOAD				100 E	1 1		1 1 1	
	$\overline{\mathbb{Y}}$	UNCENSORED \ 'LESS-THAN' V			>			1 1	, , ×,	
	RELATION: LOG(L VALUES	OAD) = SLOPE*L0	OG(FLOW) SLOPE	+ INT INT	70 24	10		1		
	- ALL VALUES	19	1.06	-0.54	ν 2				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_	SMOOTHED RELATION)W		3		×× ×	ī	
	(SHOWN IF THERE AR		,		2	1 -) 1	I I	
		AMFLOW EXCEED O PERCENTAGE (-	}	×	I	ı	
	= = 75 PERCEN	T === 25 F	PERCENT			0.1	1 1	I 	I	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

					100				_											
	CONCENTR	ATION			100		-		Ψ	1		ı	ı		ı	ı		- 1	ı	
LOW FLOW			HIGH FLOW	<u>v</u>							0									
\bigvee_{\wedge}	INCENSORE 'LESS-THAN' REATER-TH <i>A</i>	VALUE		ATION, LITER AS E	80	_										0				_
TDEN	NDS IN CONC	·ENTDAT	ION	INTRA PER L	60	F														_
VALUES	NVALUES	NWYS	SLOPE	III				⊕												
LOW FLOW	3	2	ND	SON	40	_				0										_
HIGH FLOW	2	2	ND	OGF																
				CONCI	20															
				<u>Z</u>	20															
					0	Ι.								1		ı				
					U	76	77 78	79 8	30 8	1 82	83	84	85 8	6 8	7 88	89	90 9	91 !	92	93


100

STREAMFLOW, IN CUBIC FEET PER SECOND

APPENDIX 16. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL BORON 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VA VLESS-THAN' VA		100
RELATION: LOG(LOAD) = SLOPE*LO VALUES NVALUES	G(FLOW) + INT SLOPE INT	H 10
ALL VALUES 17	0.81 -0.3	SQ.
SMOOTHED RELATION BETWEEN LOAD (SHOWN IF THERE ARE 10 OR MORE VA		NO NO NO NO NO NO NO NO NO NO NO NO NO N
STREAMFLOW EXCEEDS INDICATED PERCENTAGE OF The Percent Telephone 1 of the		0.1

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

1,000

STREAMFLOW, IN CUBIC FEET PER SECOND

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

C

					250								
	CONCENTR	ATION			230		1	1	1	ı	1	ı	
LOW FLOW			HIGH FLOW	Ф									
Ο υ	NCENSORE	VALUE	⊕	AS E	200	_							
\triangle	LESS-THAN	VALUE	$\overline{\Psi}$	žχ									
△ 'GI	REATER-THA	N' VALUE	■ ▲	2일									
				RA	150	_							
TREN	IDS IN CONC	ENTRAT	ION	Ϋ́Ξ									C
VALUES	NVALUES	NWYS	SLOPE	ICE AS-									
LOW FLOW	6	6	ND	SAM	100	_							
HIGH FLOW	3	3	ND	0.49									
				Š						(0		
				MICR	50	_			•	₽			
				Z				4	æ				

Appendix 17 Total lead

Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

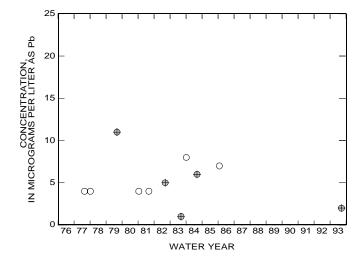
RELATION OF CONCENTRATION TO STREAMFLOW

CONG	CENTRATION	ı		100	
GROWING SEASON NONGROWING SEASON			EASON	ļ.	Ī
, LESS	SORED VALU THAN' VALU	E \pi		TER AS Pb	
RELATION: LOG(CON	C) = SLOPE*I	LOG(FLOW) +	- INT	TRA	1
VALUES	NVALUE	S SLOPE	INT	ONCENTE	•
ALL VALUES	22	0	ND	NO IMS	0
[SEASONAL RELATIONS NOT DETERMINED;				8 <u>}</u>	\tag{70\\ \tag{90\\ \tag{100\\ \tan\}\\ 100\\ \tag{100\\ \tag{100\\ \tag{100\\ \tag{100\\ \tag
INSUFFICIENT DATA FOR ANALYSIS]				Ö -	
GROWING SEASON	22	ND	ND	<u>R</u> -	•
NONGROWING SEASON	0	ND	ND	N MICRO	0 00 0
STREAMFLOW EXCEEDED				_	1 1
INDICATED PERCENTAGE OF TIME				10	100
75 PERCENT 25 PERCENT					STREAMFLOW, IN CUBIC FEET PER SECOND

100 F

RELATION OF LOAD TO STREAMFLOW

		/ALUE					
	,	LESS-THAN' VA	ALUE				
	RELATION: LOG(LOA	AD) = SLOPE*LO	OG(FLOW)	+ INT			
	VALUES	NVALUES	SLOPE	INT			
_	ALL VALUES	22	0.86	-1.44			
 SMOOTHED RELATION BETWEEN LOAD AND FLOW 							
(SHOWN IF THERE ARE 10 OR MORE VALUES)							
STREAMFLOW EXCEEDED							
INDICATED DEDOCATA OF OF THAT							


INDICATED PERCENTAGE OF TIME

75 PERCENT - - 25 PERCENT

1010

STREAMFLOW, IN CUBIC FEET PER SECOND TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

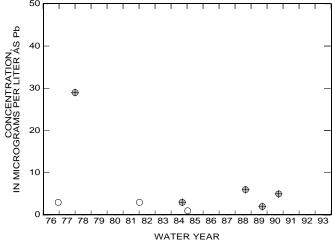
CONCENTRATION											
LOW FLOW		HIGH FLOW									
Ο υ	NCENSORE	D VALUE	+								
∇	√ 'LESS-THAN' VALUE √										
△ 'GREATER-THAN' VALUE ⚠											
TRENDS IN CONCENTRATION											
VALUES	NVALUES	NWYS	SLOPE								
LOW FLOW	6	5	ND								
HIGH FLOW	5	5	ND								

1,000

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


CONC	ENTRATION				100 F	1 1 1 1 1	ш	1 1 1 1	ттт т		
GROWING SEASON	NONG	ROWING S	EASON		F				1		=
O UNCENS	ORED VALUE	+		Pb	F			ı	1		=
√ 'LESS-T	THAN' VALUE	\forall		₹A	t			I	ı		-
	R-THAN' VALU	JE 🛦		ᅙ船	t				0		-
				RATION, LITER AS	+			ı	ı		-
RELATION: LOG(CONC) = SLOPE*LO	OG(FLOW)	+ INT	H.H.				I	ı		
VALUES	NVALUES	SLOPE	INT	E P	10 –			_	ı		_
ALL VALUES	18	0	ND	CONCENTR RAMS PER	Ē				_		=
[SEASONAL RELAT	IONS NOT DE	TERMINED);	860	ŧ			- -	, I , IO	0	=
INSUFFICIENT [DATA FOR AN	IALYSIS]		0	-			. 0			-
GROWING SEASON	18	ND	ND	CR	-	0	0	0 0	• 0		-
NONGROWING SEASON	0	ND	ND	N MICRO				00	. 0		
				Z							
STREAMFL	OW EXCEED	ED									
INDICATED PE	RCENTAGE C	F TIME			11		10	_	100		1,000
■ ■ 75 PERCENT	25 P	ERCENT				STREAM	FLOW, I	IN CUBIC FE	EET PER SEC	COND	
							,				

RELATION OF LOAD TO STREAMFLOW

_		LOAD		
	$\overline{}$	JNCENSORED V 'LESS-THAN' VA		
RELATIC	ON: LOG(LO	AD) = SLOPE*LO	OG(FLOW)	+ INT
VAL	UES	NVALUES	SLOPE	INT
ALL VALUES	3	18	1.33	-2.36
SMOOTHED	RELATION	BETWEEN LOAD	O AND FLO	w
(SHOWN IF	THERE ARE	10 OR MORE V	ALUES)	
	STREAM	MFLOW EXCEED	ED	
<u>_</u>	INDICATED	PERCENTAGE C	OF TIME	
75	5 PERCENT	25 P	PERCENT	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

						50							_
	CONCENTR	ATION							1	1	1	1	
LOW FLOW			HIGH FLO	V	Pp								
٥ ر	INCENSORE	O VALUE				40	_						
∇	'LESS-THAN'	VALUE	$\overline{\Psi}$		A AS								
△ 'GI	REATER-THA	N' VALUE	E A										
					₹ Ξ	30	_						
TREN	NDS IN CONC	ENTRAT	ION		I N			\oplus					
VALUES	NVALUES	NWYS	SLOPE		SE								
LOW FLOW	3	3	ND		CONC	20							
HIGH FLOW	5	5	ND		GR								
					RO								
					ICR	10							

STREAMFLOW, IN CUBIC FEET PER SECOND

1,000

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01379500 PASSAIC RIVER NEAR CHATHAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONC	ENTRATION			1	00 F			
GROWING SEASON	NON	GROWING SE	ASON		ţ		I	
O LINCENS	SORED VALU	ıe 🕀		В	ţ	I	I	
	THAN' VALUE			S	+	I	7	
, A	R-THAN' VALO	- v		FR A	+		0	
△ GREATEI	X-IHAN VAL	.02 //		ĔĦ		1	ı	
RELATION: LOG(CONC	'\	OC/FLOW/	INIT	X. L.		ı	I	
VALUES	NVALUE:	, ,	INT	PENT		0 00)	0
				ONCE AMS F	10	0 10 0		0
ALL VALUES	24	0	ND	δŞ	F	ο Q	1	O
[SEASONAL RELAT	IONS NOT D	ETERMINED;		ဝန	Ţ			
INSUFFICIENT [DATA FOR A	NALYSIS]		õ	+	•		
GROWING SEASON	24	ND	ND	Ŗ	+	<u></u>	Ö	
NONGROWING SEASON	0	ND	ND	N MICRO		000	_	0
				Z	Ī	000	•	O
STREAMFI	OW EXCEE	DED						
INDICATED PE	RCENTAGE	OF TIME			10	100		1
·		,			. 0		EET DED	
- 75 PERCENT	25	PERCENT				STREAMFLOW, IN CUBIC F	EET PER	SECOND

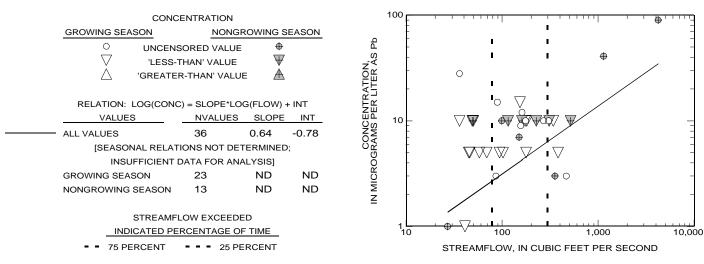
RELATION OF LOAD TO STREAMFLOW

	LOAD				100 E	1 1			
×	UNCENSORED V	'ALUE			F			Y	∃
∇	'LESS-THAN' VA	ALUE		>	E	i		î	××
RELATION: LOG(L	OAD) = SLOPE*LO	G(FLOW)	+ INT	PER D/	10 –	ı		//	
VALUES	NVALUES	SLOPE	INT	H	10	1	/		×
ALL VALUES	24	1.13	-1.77	SON	F			j	=
SMOOTHED RELATION	N BETWEEN LOAD	O AND FLC	w	Pou	-	1	× J	ı	-
(SHOWN IF THERE AR	E 10 OR MORE V	ALUES)		Z Ó	1	× ×	X	1	=
STREA	MFLOW EXCEED	ED		LOAI	Ē		×	Ī	
INDICATED	PERCENTAGE C	F TIME			-	×××		1	-
■ ■ 75 PERCEN	Γ = = 25 P	ERCENT			-	Ī		I	-
					0.1		100		1,0

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION			1	1	ı	'	1	'	'	'	'	'	1	'	1	1 1	- 1	ı	
LOW FLOW HIGH FLOW	Рр																		
		ю –																	_
V 'LESS-THAN' VALUE ₩	;∢ `~			⊕															
△ 'GREATER-THAN' VALUE 🛦 🗒	臣																		
ά 4	[] 3	30	_																
TRENDS IN CONCENTRATION	į.																		
VALUES NVALUES NWYS SLOPE	15																		
LOW FLOW 8 8 ND	IN MICROGRAMS PER LITER AS	20																	_
HIGH FLOW 4 4 ND	GR																		
	8						_												
	€ 1	0	0				0		#)									4
	z		0		•)		0		0		,	$\overline{}$						
	_									_	_		V			Φ.		_	
		0	70 7	7 70	70	. 00		1 00	. 00	- 0.4	Υ	- 00	, 07	. 00	100	<u> </u>	04 /	20 0	\equiv
		-	76 77	78	79	80	8	1 82	2 83	84	85	86	8/	88	89	90	91	92 8	13

50


STREAMFLOW, IN CUBIC FEET PER SECOND

WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

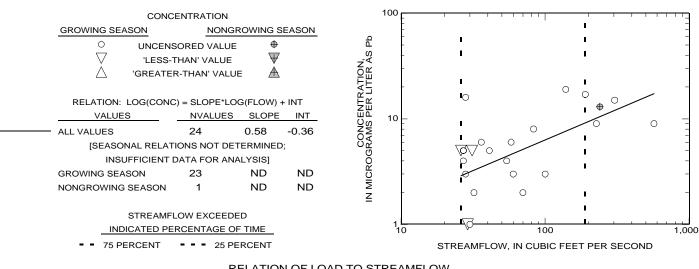
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD		10,000		•	1 1 1 1	777
×	UNCENSORED VALUE		F	ı	·	~	=
V	'LESS-THAN' VALUE		→ 1000	1	1		
RELATION: LO	OG(LOAD) = SLOPE*LOG(FLOW) + INT	PER D	ı	ı ×		=
VALUES	NVALUES SLOPE	INT	_ 100 ∟	1	ı /		
ALL VALUES	36 1.64	-3.05	SOZ		ı _/		=
	ATION BETWEEN LOAD AND FL E ARE 10 OR MORE VALUES)	ow	70 d 10 z		X		
S <u>INDIC</u>	TREAMFLOW EXCEEDED ATED PERCENTAGE OF TIME		LOAD, I		· '^		-
= = 75 PER	CENT = = = 25 PERCENT		0.1	100	1,000)	10,000
				STREAMFLOW,	IN CUBIC FEET PER	R SECOND	

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

0


76 77 78 79 80⁹81 82 83 84 85 86 87 88 89 90 91 92 93 WATER YEAR

					100		
	CONCENTE	RATION			100	1 1	
LOW FLOW			HIGH FLOW	8			⊕
Ο υ	NCENSORE	D VALUE	Φ	S D	80	_	
$\overline{}$	LESS-THAN	' VALUE	$\overline{\Psi}$	Žά	00		
△ 'GI	REATER-TH	AN' VALUI	E A	E			
					60	_	
TREN	IDS IN CON	CENTRAT	ION	ΞË			
VALUES	NVALUES	NWYS	SLOPE	25			
LOW FLOW	10	7	ND	Ş. Ş.	40	_	⊕
HIGH FLOW	9	5	ND	O ^R O			
				MICRO			
				∑ S	20	_	
				Z			

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time 01381200 ROCKAWAY RIVER AT PINE BROOK, N.J.

[NVALUES, number of values: LOG, base-10 logarithm; CONC, concentration in indicated units: INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

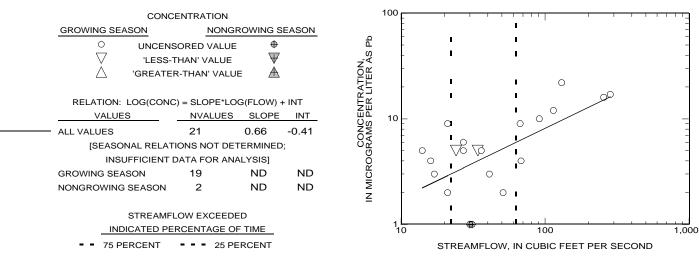
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD	100
× UNCENSORED VALUE	
V 'LESS-THAN' VALUE	¥
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT	
VALUES NVALUES SLOPE INT	<u> </u>
ALL VALUES 24 1.58 -2.63	OUNDS .
SMOOTHED RELATION BETWEEN LOAD AND FLOW	
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Z 1
STREAMFLOW EXCEEDED	
INDICATED PERCENTAGE OF TIME	- * -
75 PERCENT 25 PERCENT	- ' ™
	0.1 10 100 1,000
	STREAMFLOW, IN CUBIC FEET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

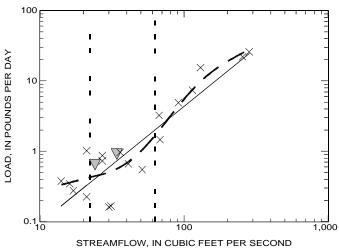
	CONCENTR	ATION					'	' '	'	'	'			I			' '	- 1	- 1	'	ı
LOW FLOW			HIGH FLOW	Q																	
٥ ر	NCENSORE	D VALUE	⊕	O,	20	L															_
∇	LESS-THAN	VALUE	$\overline{\Psi}$	Z,A																	
△ 'Gı	REATER-THA	AN' VALUE	■ ▲	CONCENTRATION, IN MICROGRAMS PER LITER A																	
				7.R/ L/	15	L		⊕													_
TREN	IDS IN CONC	ENTRAT	ON																	⊕	.
VALUES	NVALUES	NWYS	SLOPE	SS																•	
LOW FLOW	1	1	ND	Z A Z	10	_															4
HIGH FLOW	4	4	ND	96				4)			⊕									
				Š																	
				M	5	H								7	abla						-
				Z																	
					0	76 7	77 78	8 79	80 8	1 82	2 83	84	85	86	87	88	89	90 9	91 9	2 9	3


WATER YEAR

25 -

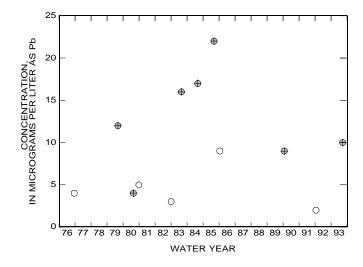
APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01381500 WHIPPANY RIVER AT MORRISTOWN, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

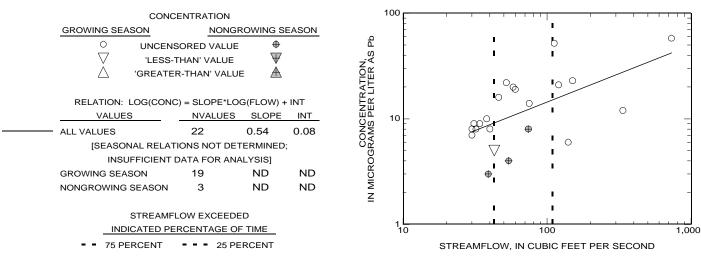
RELATION OF LOAD TO STREAMFLOW

_		LOAD				100 E
	× un	CENSORED V	/ALUE			F
	\(\sqrt{L} \)	ESS-THAN' VA	ALUE		,	_
					á	5 -
RELATION	N: LOG(LOAI	D) = SLOPE*LC	OG(FLOW)	+ INT	٥	10
VALU	JES	NVALUES	SLOPE	INT	0	
ALL VALUES		21	1.66	-2.68	O C	3 [
					2	5
- SMOOTHED	RELATION B	ETWEEN LOAI	D AND FLC	W		2
(SHOWN IF T	HERE ARE 1	0 OR MORE V	ALUES)		3	<u> </u>
					ç	j E
	STREAMF	LOW EXCEED	DED		2	5 E
	NDICATED PE	ERCENTAGE C	OF TIME		-	"


- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION										
LOW FLOW HIGH FLOW										
Ο υ	NCENSORE	D VALUE	⊕							
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$							
△ 'GF	REATER-THA	N' VALUE	■ ▲							
TREN	DS IN CONC	ENTRAT	ION							
VALUES	NVALUES	NWYS	SLOPE							
LOW FLOW	5	5	ND							
HIGH FLOW	7	7	ND							


75 PERCENT

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01381800 WHIPPANY RIVER NEAR PINE BROOK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD		1,000		
$\overset{\times}{\triangledown}$	UNCENSORED VALUE 'LESS-THAN' VALUE	2	- -	1 1	×
RELATION: LOG(VALUES	(LOAD) = SLOPE*LOG(FLOW NVALUES SLOPE	') + INT	100	! ! . ×	
ALL VALUES	22 1.54	-2.19	70 20 10		×//×
	ON BETWEEN LOAD AND FL .RE 10 OR MORE VALUES)	OW (
	EAMFLOW EXCEEDED		1 T	× × '	-
= 75 PERCEI		-		1 1	
			0.1	100 STREAMFLOW, IN CUBIC FE	1,0 EET PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION					' '		'	' '	'		 '					1
LOW FLOW			HIGH FLOW	<u>-</u> 9														
\bigvee_{Λ}	INCENSORE 'LESS-THAN' REATER-THA	VALUE		TION, TER AS P	80	_											-	-
				R LI	60	_							⊕				-	_
	IDS IN CONC			PENT		⊕							•					
VALUES	NVALUES	NWYS	SLOPE	Šδ		·												
LOW FLOW	8	7	ND	CONCE	40	_											_	4
HIGH FLOW	6	6	ND	968														
				MICRO	20			⊕									4	è
				<u>Z</u>				⊕	_			0						
						0	0		0 (o c	0	0		4	₽	0		

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

WATER YEAR

100 -

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01382000 PASSAIC RIVER AT TWO BRIDGES, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

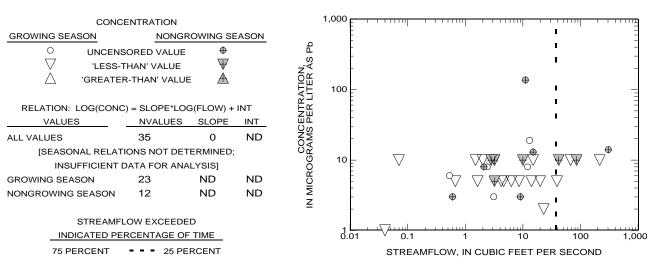
CONC	ENTRATION		
GROWING SEASON	NONG	ROWING S	EASON
LESS-	SORED VALUE THAN' VALUE R-THAN' VALU	$\overline{\Psi}$	
RELATION: LOG(CONC	C) = SLOPE*LO	OG(FLOW) +	INT
VALUES	NVALUES	SLOPE	INT
ALL VALUES	22	0	ND
[SEASONAL RELAT	IONS NOT DE	TERMINED	;
INSUFFICIENT I	DATA FOR AN	IALYSIS]	
GROWING SEASON	22	ND	ND
NONGROWING SEASON	0	ND	ND
STREAMF	LOW EXCEED	ED	
INDICATED PE	RCENTAGE C	F TIME	
- 75 PERCENT	25 P	ERCENT	

RELATION OF LOAD TO STREAMFLOW

LOAD		1,000		.,	
X UNCENSORED VALUE ▼ 'LESS-THAN' VALUE			, ! !		=
RELATION: LOG(LOAD) = SLOPE*LOG(FLO	ER DAY	100 —			
VALUES NVALUES SLOP	E INT H	100		××//	<u> </u>
ALL VALUES 22 0.93	-1.11 ON Z	-	' × '	√× ×	=
- SMOOTHED RELATION BETWEEN LOAD AND F	LOW O	×		×	-
(SHOWN IF THERE ARE 10 OR MORE VALUES)	Ö.	10	×		
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	LOA				=
	_		1]
= = 75 PERCENT = = = 25 PERCEN	I		ı		
		100	1	,000	10,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONC	ENTRATION											' '		1
LOW FLOW		HIGH FLOW	<u>/</u>											
O UNCEN	SORED VALUE			40 -	_									
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$	ION, ER AS											
△ 'GREATE	R-THAN' VALU	e 🛦												
			& □	30	_					0				
TRENDS IN	CONCENTRAT	ION	ENTR PERTR							0				
VALUES NVA	UES NWYS	SLOPE	SE											
LOW FLOW 7	7	ND	CONCE	20 -	_									
HIGH FLOW 7	7	ND	GRO											
			S									•		
			IN MICRO	10	_	⊕	0		⊕			⊕ [™]		
			2 Z		0	(0 0	0				*	0	
			=			⊕		⊕			$\overline{\Psi}$			


STREAMFLOW, IN CUBIC FEET PER SECOND

0 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

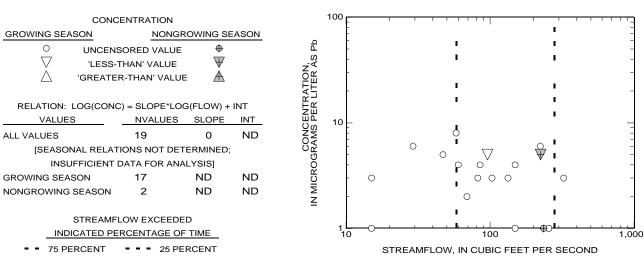
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	100 × 1
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT Q.5. 1.1.10 A 1.00 0	
ALL VALUES 35 1.18 -1.99 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT 25 PERCENT	0.0001
	STREAMFLOW, IN CUBIC FEET PER SECOND

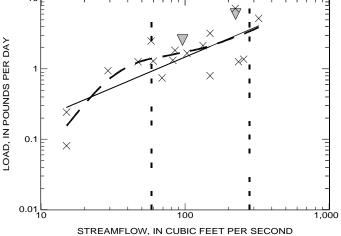
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATIO	N	20		1	1 1		ı	' '	- 1		'	'			- 1	'		
LOW FLOW	HIGH FLOW	2																
O UNCENSORED VAI			L															
√	UE ₩ ZÃ	∢ Y																
△ 'GREATER-THAN' V	ALUE 🕭 🛱	ш																
	Ä.	⊒ √ 15	L															
TRENDS IN CONCENT	RATION	į			\oplus													
VALUES NVALUES NW	YS SLOPE O	2																
LOW FLOW 0	LUE W ALUE M RATION YS SLOPE D ND O ND O O O O O O O O O O O O O	≥ 5 10	_	Ψ	₩.	$\overline{\Psi}$												_
HIGH FLOW 6	3 ND	<u>Y</u>		•	w	*												
		2																
	(ິງ ₹ 5	L			$\overline{\Psi}$												_
	-	z				•												
	-	_																
		0																لب
			76 7	7 78	79	80 8	1 82	83	84	85	86	87	88	89	90	91	92	93

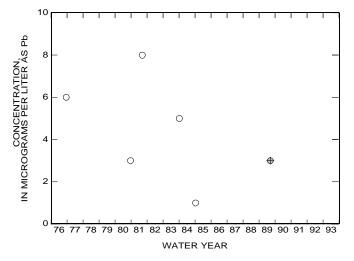

WATER YEAR

25 -

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.


[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



RELATION OF LOAD TO STREAMFLOW

	LOAD				10 E
×	UNCENSORED V				Ē
٧	'LESS-THAN' VA	ALUE		λΑΥ	-
RELATION: LOG(L	.OAD) = SLOPE*LO	G(FLOW)	+ INT	ER [1
VALUES	NVALUES	SLOPE	INT	R	' [
ALL VALUES	19	0.87	-1.57	NDS	E
- SMOOTHED RELATION	N BETWEEN LOAI	AND FLC	W	Pou	-
(SHOWN IF THERE AR	RE 10 OR MORE V	ALUES)		Z Ć	0.1
STREA	AMFLOW EXCEED	ED		-OAE	Ē
INDICATED	D PERCENTAGE C	F TIME		_	-
75 PERCEN	T = = = 25 P	ERCENT			-

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	⊕		
▽ ,	$\overline{\Psi}$		
△ 'GF	REATER-THA	N' VALUE	\blacksquare
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	5	5	ND
HIGH FLOW	1	1	ND

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01388600 POMPTON RIVER AT PACKANACK LAKE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION	100
GROWING SEASON O UNCENSORED VALUE VILESS-THAN' VALUE O 'GREATER-THAN' VALUE	TTER AS Pb
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	ONNO PARTY ON THE
ALL VALUES 21 0 ND [SEASONAL RELATIONS NOT DETERMINED;	S O O O
INSUFFICIENT DATA FOR ANALYSIS]	
GROWING SEASON 20 ND ND NONGROWING SEASON 1 ND ND	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	10 100 1,000 10
75 PERCENT 25 PERCENT	STREAMFLOW, IN CUBIC FEET PER SECOND

RELATION OF LOAD TO STREAMFLOW

	LOAD				100 E		 	E X
$\overset{\times}{\triangledown}$	UNCENSORED \ 'LESS-THAN' V			>	- - -	, × ,	i ×	/
	(LOAD) = SLOPE*LO	, ,		PER DA	-	×		-
VALUES ALL VALUES	NVALUES 21	SLOPE 0.96	-1.38	JNDS P		1	` /i ×	
SMOOTHED RELATION	ON BETWEEN LOAI	O AND FLO	DW .	NNOc	10	×	/*×	_
(SHOWN IF THERE A	RE 10 OR MORE V	ALUES)		, N	-	<u>//</u> ×	×	
STRE	EAMFLOW EXCEED	ED		OA	-	×//`i ×	ı	-
INDICATE	ED PERCENTAGE (OF TIME		_	-	\leftarrow \times	ı	-
75 PERCE	NT = = = 25 F	PERCENT				/ V X	•	
					1 10	100	1,000	10,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION			50			1 1	1			1	1 1			- 1	ı	
∇	UNCENSORE 'LESS-THAN' REATER-THA	D VALUE VALUE	HIGH FLOW	CONCENTRATION, IN MICROGRAMS PER LITER AS Pb	40	_							0					_
TREN VALUES	NDS IN CONC	ENTRATI	ION SLOPE	S PENT	30													_
LOW FLOW HIGH FLOW	5 7	5 6	ND ND	CONC	20	_												_
				IN MICRO	10	_	+	∌ ○	○_ ⊕					7	Ф 7	⊕		=
					0	76 77	78 7	9 80 8	O 31 82	83 8	34 85	5 86	87	88	89 9	90 9	1 92	2 93

STREAMFLOW, IN CUBIC FEET PER SECOND

WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

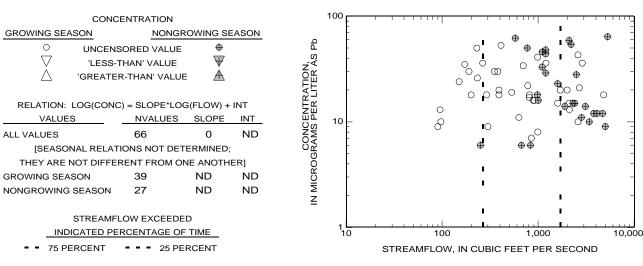
RELATION OF CONCENTRATION TO STREAMFLOW

CONC	CENTRATION	
GROWING SEASON	NONGROWING	SEASON
, LESS-	SORED VALUE THAN' VALUE R-THAN' VALUE	7
RELATION: LOG(CONG	C) = SLOPE*LOG(FLOW NVALUES SLOP	•
ALL VALUES [SEASONAL RELAT	20 0 TIONS NOT DETERMINE	ND ED;
INSUFFICIENT	DATA FOR ANALYSIS]	
GROWING SEASON	13 ND	ND
NONGROWING SEASON	7 ND	ND
STREAMF	LOW EXCEEDED	
INDICATED PE	RCENTAGE OF TIME	
■ ■ 75 PERCENT	25 PERCENT	

RELATION OF LOAD TO STREAMFLOW

LOAD × UNCENSORED VALUE VLESS-THAN' VALUE	1,000			×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	S PER DA			× V = = = = = = = = = = = = = = = = = =
ALL VALUES 20 1.16 -1.77 SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)	SONDO NI	×	× ×	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME - 75 PERCENT 25 PERCENT	LOAD,	×	1	
	0.1	0 100 STREAMFLOW	1,000 , IN CUBIC FEET PER	10,000 SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS


	CONCENTRA	TION			50			1 1	1 1	1 1	1	1 1			-	
\bigvee_{\wedge}	INCENSORED 'LESS-THAN' \ REATER-THAN	VALUE /ALUE	HIGH FLOW ⊕ ₩		40	_										_
	NDS IN CONCE			ENTRA. PER LI	30	_						⊕				_
LOW FLOW HIGH FLOW	NVALUES 6 4	3 3	SLOPE ND ND	CONCENTRATION,	20	_		С)							_
				N M SO RO	10	_	•	⊕ (* 0 °			$\overline{\Psi}$			0	_
					0	76 77	78 7	9 80 8	31 82 8	33 84	85 86	87 8	8 89	90 9	1 92	2 93

WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

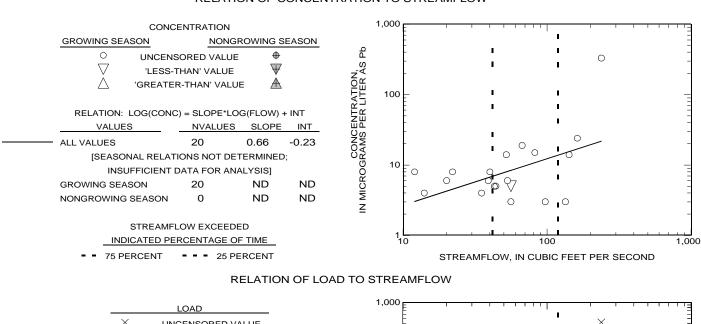
RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VA VLESS-THAN' VAL		10,000		i	i i i ×	-
RELATION: LOG(LOAD) = SLOPE*LOG VALUES NVALUES	(FLOW) + INT يا SLOPE INT يا			I I		
ALL VALUES 66 SMOOTHED RELATION BETWEEN LOAD A (SHOWN IF THERE ARE 10 OR MORE VALUE)		100		× × × × × × × × × × × × × × × × × × ×	· · · · · · · · · · · · · · · · · · ·	
STREAMFLOW EXCEEDE INDICATED PERCENTAGE OF 75 PERCENT 25 PE	D C	10		^ ×^ - ×^		
		1 <u> </u> 10	100 STREAMFLOW,	1,000		,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	CONCENTR	ATION				\			'	1 1	'	1	1	1	1	' '	1	'	ı	1
LOW FLOW			HIGH FLOW	P																
O U	NCENSORE	D VALUE	⊕		80	L														_
∇	LESS-THAN	VALUE	₩	Z,X																
△ 'GI	REATER-THA	N' VALUI	■ ▲	RATION, LITER AS																
					60	-	Ф Ф												-	4
TREN	IDS IN CONC	ENTRAT	ION			⊕	_													
VALUES	NVALUES	NWYS	SLOPE	NS C			0													
LOW FLOW	11	7	ND	Š	40	_		⊕											-	4
HIGH FLOW	22	8	ND	96			_			0				4	Φ (0				
				S S		\oplus	0							0						
				CONCENTI	20	0	О Ф	0								4)		-	4
				Z		\$	*	•			\oplus						+			
							8	⊕									Ψ	, 0		
					0	76	77 78	70.9	20 91	92	22 0/	1 01	5 06	97	00	90	00 0	11 0	2 01	_
						10	11 10	19 0	0001	02 (oo 04	+ 0	000	07	00	69	90 8	, 1 9	Z 93)

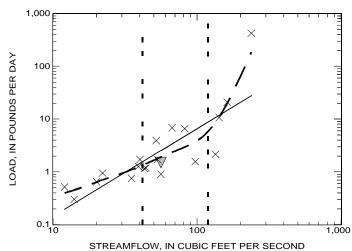

WATER YEAR

100 -

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01391500 SADDLE RIVER AT LODI, N.J.

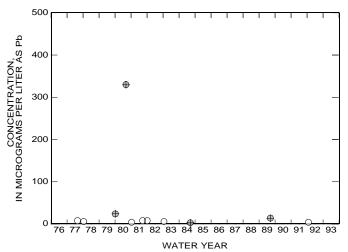
[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW



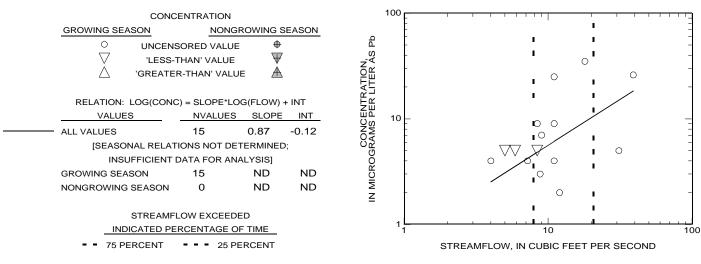
SMOOTHED RELATION BETWEEN LOAD AND FLOW (SHOWN IF THERE ARE 10 OR MORE VALUES)

STREAMFLOW EXCEEDED


INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

	CONCENTRATION	
LOW FLOW		HIGH FLOW
0	UNCENSORED VALUE	⊕
∇	'LESS-THAN' VALUE	$\overline{\Psi}$
\triangle ,	GREATER-THAN' VALU	E A


TRENDS IN CONCENTRATION											
VALUES	NVALUES	NWYS	SLOPE								
LOW FLOW	7	6	ND								
HIGH FLOW	4	3	ND								

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

LOAD X UNCENSORED VALUE VLESS-THAN' VALUE	∨	10	, ×	×
RELATION: LOG(LOAD) = SLOPE*LOG(FLOW) VALUES NVALUES SLOPE ALL VALUES 15 1.87	INT K		× // × // × // × // × // × // × // × /	×
SMOOTHED RELATION BETWEEN LOAD AND FLO (SHOWN IF THERE ARE 10 OR MORE VALUES)	Z Z	0.1	××××××××××××××××××××××××××××××××××××××	
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME 75 PERCENT - 25 PERCENT	ГОАБ	E - - -		
		0.01	10 STREAMFLOW, IN CUBIC FEET F	100 PER SECOND

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		50		1 1	ı		1	1 1		ı		ı	1	1	
	GH FLOW														
○ UNCENSORED VALUE √ 'LESS-THAN' VALUE	₩ ₩ EN AS I	40	_												_
△ 'GREATER-THAN' VALUE	HIO TIO														
	R RA	30	_												_
TRENDS IN CONCENTRATION VALUES NVALUES NWYS S	Πn				⊕										
LOW FLOW 4 4	IN MICROGRAMS I	20	_												_
HIGH FLOW 2 2	ND GR														
	ICR.	10													
	Σ Ζ	10									_	-			
	_				()				V	\	/	⊕	0	
		0	76 77	78 7	79 80	81 8	2 83	84 8	85 8	6 87	7 88	89 9	90 91	92	93

WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

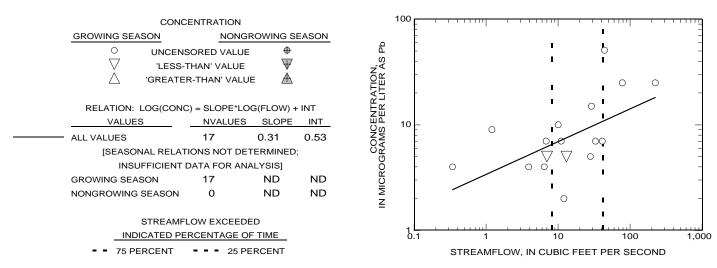
CONC	ENTRATION				100 F	1	1 1 1		1	1 1 1 1	\neg
GROWING SEASON	NONGR	OWING S	SEASON		F				I		
O UNCENS	SORED VALUE			В	F			ı	ı		
V 'LESS-	THAN' VALUE	\forall		 AS	+			1	ı		
△ 'GREATE	R-THAN' VALUE	A		ᅙᄣ	f				0		
				ξĒ	-			1	ı		
RELATION: LOG(CONC	C) = SLOPE*LOC	(FLOW)	+ INT	F. F. F. F. F. F. F. F. F. F. F. F. F. F		0			_	0	
VALUES	NVALUES	SLOPE	INT	E E	10 –			. 0 ~	0 1		
ALL VALUES	20	0	ND	CONCENTE RAMS PER	E		0	. 0 0	_	0	
[SEASONAL RELAT	IONS NOT DET	ERMINED) ;	ၓန္ထ	Ė		0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 0	Ŭ	
INSUFFICIENT I	DATA FOR ANA	LYSIS]		0	-						
GROWING SEASON	20	ND	ND	R	-			∞			
NONGROWING SEASON	0	ND	ND	N MICRO				•			
				Z							
STREAMF	LOW EXCEEDE	D						• •			
INDICATED PE	RCENTAGE OF	TIME			11			10			
75 PERCENT	25 PE	RCENT				STREA	MFLOW	, IN CUBIC	FEET PER	R SECOND	
								,			

RELATION OF LOAD TO STREAMFLOW

		LOAD				10 E	1 1 1	1 1 1 1 1 1		E''''
	$\stackrel{ imes}{ riangledown}$	UNCENSORED V			∀	Ē		1	×i	×
	RELATION: LOG(LO	DAD) = SLOPE*LC NVALUES	OG(FLOW) SLOPE	+ INT INT	PER D,	1 _		. ×		´
	ALL VALUES	20	1.19	-1.63	NDS	<u>-</u> - -		××		
- —	SMOOTHED RELATION	N BETWEEN LOAD	AND FLO	w	PO	-	<u> </u>		i	-
	(SHOWN IF THERE AR	E 10 OR MORE V	ALUES)		Z	0.1	~ 7	*	Ī	_
	INDICATED	MFLOW EXCEED PERCENTAGE C	F TIME		LOAD	-		ı× ı	1	=
	75 PERCENT	「 25 P	ERCENT			0.01		10	<u> </u>	100

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

Values Noteing Value Value Value Values Values Noteing Values Values Noteing Values V	CONCENTRATION LOW FLOW UNCENSORED VALUE VILESS-THAN' VALUE GREATER-THAN' VALUE	TION, TER ÅS Pb	20 -	
NO DO DO DO DO DO DO DO DO DO DO DO DO DO	VALUES NVALUES NWYS SLOPE LOW FLOW 3 2 ND	CONCENTRA	0	-
	HIGHTEOW Z Z ND	IN MICROG	0	-


STREAMFLOW, IN CUBIC FEET PER SECOND

WATER YEAR

APPENDIX 17. Relations of constituent concentration and load to streamflow and trends in concentration with time TOTAL LEAD 01395000 RAHWAY RIVER AT RAHWAY, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW

RELATION OF LOAD TO STREAMFLOW

	LOAD NCENSORED VALUE LESS-THAN' VALUE	_	100		1 1	 	
RELATION: LOG(LOA VALUES	AD) = SLOPE*LOG(FLO	, i	- - - -	=	· ×		
ALL VALUES	17 1.3		1			r I	
SMOOTHED RELATION E (SHOWN IF THERE ARE		_	0.1		X ₁ ×	1 1	
	FLOW EXCEEDED PERCENTAGE OF TIME 25 PERCE	 '	0.001		I I		1,000
			0.1	STREAMFLOW, IN	10 I CUBIC FEET	100 PER SECOND	1,000

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

CONCENTRATION		100	1 1	1 1 1	1 1 1	1 1	' '		1 1 1	
LOW FLOW O UNCENSORED VALUE	HIGH FLOW □									
VILESS-THAN' VALUE Orentary VALUE Orentary VALUE	₩ NON NON NON NON NON NON NON NON NON NO		_							
TRENDS IN CONCENTRAT			_							-
VALUES NVALUES NWYS	ND ND	2		⊕						
LOW FLOW 6 6	ND ÖŞ	40	_							-
HIGH FLOW 3 3	ND 5	5								
		20		⊕					⊕	_
	<u>z</u>				0 0		0	∇	0	
		0	76 77 7	8 79 80 8	1 82 83	84 85 8	36 87	88 89	90 91 92	93

WATER YEAR

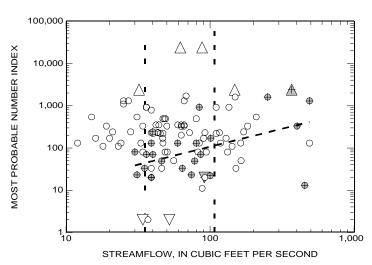
100 -

Appendix 18 Fecal coliform bacteria

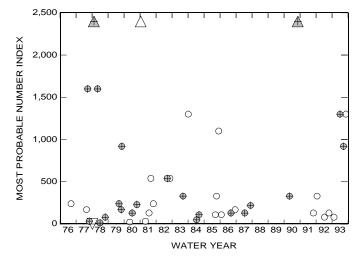
Station number	Station name
01377000	Hackensack River at Riverdale, N.J.
01379000	Passaic River near Millington, N.J.
01379500	Passaic River near Chatham, N.J.
01380500	Rockaway River above Reservoir, at Boonton, N.J.
01381200	Rockaway River at Pine Brook, N.J.
01381500	Whippany River at Morristown, N.J.
01381800	Whippany River near Pine Brook, N.J.
01382000	Passaic River at Two Bridges, N.J.
01382500	Pequannock River at Macopin Intake Dam, N.J.
01387500	Ramapo River near Mahwah, N.J.
01388600	Pompton River at Packanack Lake, N.J.
01389500	Passaic River at Little Falls, N.J.
01389880	Passaic River at Route 46, at Elmwood Park, N.J.
01391500	Saddle River at Lodi, N.J.
01393450	Elizabeth River at Ursino Lake, at Elizabeth, N.J.
01394500	Rahway River near Springfield, N.J.
01395000	Rahway River at Rahway, N.J.

APPENDIX 18. Relations of constituent concentration and load to streamflow and trends in concentration with time FECAL COLIFORM BACTERIA 01377000 HACKENSACK RIVER AT RIVERVALE, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

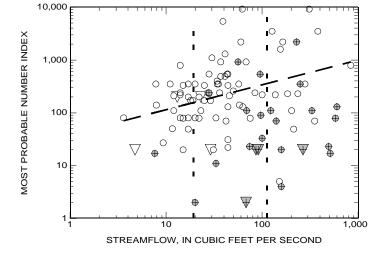
CONCENTRATION					
GROWING SEASON	NONGR	OWING SE	EASON		
O UNCEN	SORED VALUE	Φ			
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$			
△ 'GREATE	R-THAN' VALUE	\mathbb{A}			
RELATION: LOG(CON	C) = SLOPE*LOG	G(FLOW) +	INT		
VALUES	NVALUES	SLOPE	INT		
ALL VALUES	103	0	ND		
[SEASONAL REI	ATIONS DETER	MINED;			
THEY ARE DIFFERE	ENT FROM ONE	ANOTHER	₹]		
GROWING SEASON	78	0	ND		
 NONGROWING SEASON	25	0.85	0.33		
		_			


STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

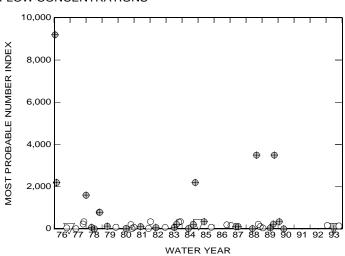
CONCENTRATION						
LOW FLOW			HIGH FLOW			
Ο υ	NCENSORE	O VALUE	⊕			
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$			
△ 'GF	REATER-THA	N' VALUE	\blacksquare			
TREN	DS IN CONC	ENTRAT	ION			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	21	11	ND			
HIGH FLOW	22	11	ND			



APPENDIX 18. Relations of constituent concentration and load to streamflow and trends in concentration with time FECAL COLIFORM BACTERIA 01379000 PASSAIC RIVER NEAR MILLINGTON, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

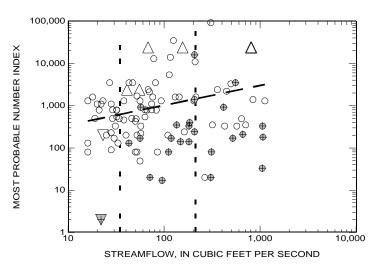
RELATION OF CONCENTRATION TO STREAMFLOW


CONC	CONCENTRATION					
GROWING SEASON	NONGR	OWING SE	EASON			
O UNCENS	SORED VALUE	⊕				
√ 'LESS-	THAN' VALUE	\forall				
△ 'GREATE	R-THAN' VALUE	<u> </u>				
RELATION: LOG(CONC	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT					
VALUES	NVALUES	SLOPE	INT			
ALL VALUES	105	0	ND			
[SEASONAL REL	ATIONS DETER	MINED;				
THEY ARE DIFFERE	THEY ARE DIFFERENT FROM ONE ANOTHER]					
GROWING SEASON	80	0.47	1.59			
NONGROWING SEASON	25	0	ND			

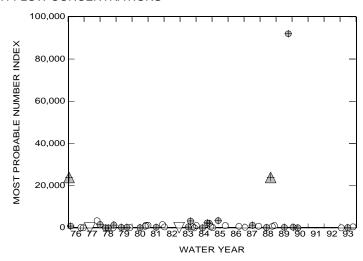
INDICATED PERCENTAGE OF TIME
 75 PERCENT
 25 PERCENT

STREAMFLOW EXCEEDED

CONCENTRATION					
LOW FLOW			HIGH FLOW		
Ο υ	NCENSOREI	D VALUE	⊕		
abla ,	LESS-THAN'	VALUE	$\overline{\Psi}$		
△ 'GF	REATER-THA	N' VALUE	■ ▲		
TREN	DS IN CONC	ENTRAT	ION		
VALUES	NVALUES	NWYS	SLOPE		
LOW FLOW	24	14	ND		
HIGH FLOW	26	15	0		


RELATION OF CONCENTRATION TO STREAMFLOW

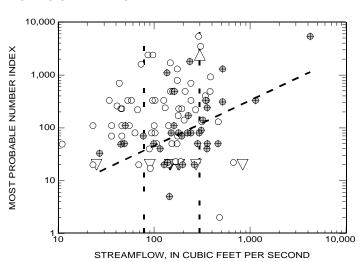
	CONCENTRATION						
	GROWING SEASON	NONGR	OWING SE	EASON			
	O UNCENS	ORED VALUE	⊕				
	√ 'LESS-T	THAN' VALUE	\forall				
	△ 'GREATER	R-THAN' VALUE	\blacksquare				
	RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT						
	VALUES	NVALUES	SLOPE	INT			
	ALL VALUES	106	0	ND			
	[SEASONAL RELA	ATIONS DETER	MINED;				
	THEY ARE DIFFERE	NT FROM ONE	ANOTHER	?]			
-	GROWING SEASON	81	0.47	2.07			
	NONGROWING SEASON	25	0	ND			
	0.70.5 4.451	014/51/05555	_				


STREAMFLOW EXCEEDED

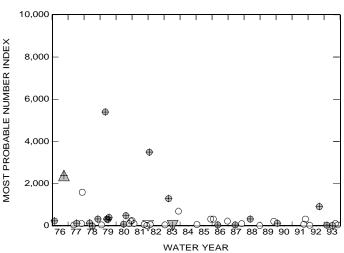
INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

CONCENTRATION						
LOW FLOW	HIGH FLOW					
<u> </u>	NCENSORE	D VALUE	•			
	LESS-THAN	VALUE	\forall			
△ 'GREATER-THAN' VALUE						
TREN	IDS IN CONC	ENTRAT	ION			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	25	14	ND			
HIGH FLOW	24	14	0			


RELATION OF CONCENTRATION TO STREAMFLOW

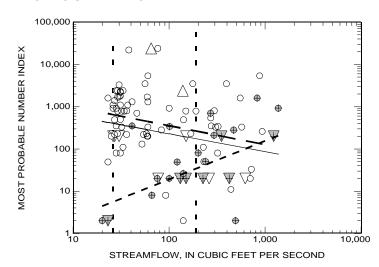
	CONCENTRATION					
GROWING SEA	GROWING SEASON			EASON		
		RED VALUE AN' VALUE	⊕			
RELATION:	'GREATER-	THAN' VALUE	_	- INT		
VALUE	` ,	NVALUES	` ,	INT		
ALL VALUES		107	0	ND		
[SEAS	SONAL RELAT	IONS DETER	MINED;			
THEY AR	THEY ARE DIFFERENT FROM ONE ANOTHER]					
GROWING SEA	SON	69	0	ND		
NONGROWING	SEASON	38	0.86	-0.06		


STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

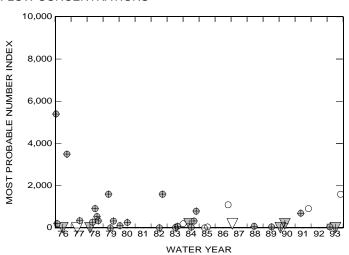
CONCENTRATION						
LOW FLOW			HIGH FLOW			
	NCENSOREI		⊕ ₩/			
✓ 'LESS-THAN' VALUE ▼ 'GREATER-THAN' VALUE						
<u> </u>	KEATEK-THA	IN VALUE	=			
TREN	DS IN CONC	ENTRAT	ION			
VALUES	NVALUES	NWYS	SLOPE			
LOW FLOW	26	14	0			
HIGH FLOW	22	13	0			


RELATION OF CONCENTRATION TO STREAMFLOW

CON	CONCENTRATION				
GROWING SEASON	NONGE	ROWING	SEASON		
O UNCEN	SORED VALUE				
√ 'LESS	-THAN' VALUE	\forall	7		
△ 'GREATI	ER-THAN' VALU	e 🕭	7		
RELATION: LOG(CON	IC) = SLOPE*LO	G(FLOW)	+ INT		
VALUES	NVALUES	SLOPE	INT		
ALL VALUES	103	-0.42	3.2		
[SEASONAL RE	LATIONS DETER	RMINED;			
THEY ARE DIFFER	ENT FROM ONE	ANOTHE	R]		
GROWING SEASON	80	-0.45	3.45		
NONGROWING SEASON	23	0.91	-0.54		
STREAM	FLOW EXCEEDE	D			

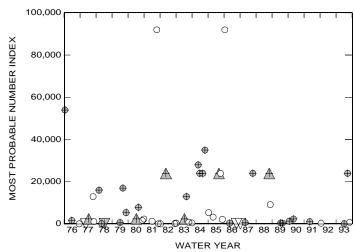
75 PERCENT

INDICATED PERCENTAGE OF TIME


- - 25 PERCENT

TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

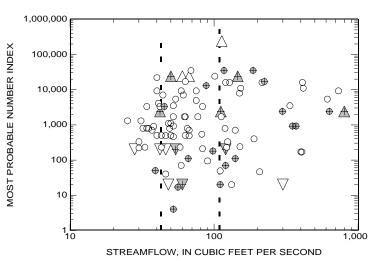
LOW FLOW			HIGH FLOW
O U	NCENSORE	D VALUE	⊕
∇	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	IDS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	8	7	ND
HIGH FLOW	30	13	ND


CONCENTRATION

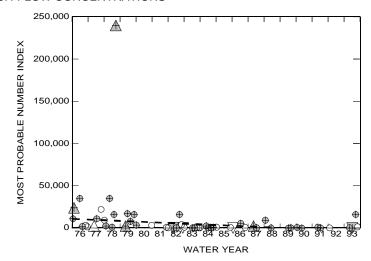
RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION		1,000,000 -
	OWING SEASON	_ ' '
○ UNCENSORED VALUE ▽ 'LESS-THAN' VALUE △ 'GREATER-THAN' VALUE	, and the second	
RELATION: LOG(CONC) = SLOPE*LOG VALUES NVALUES	(FLOW) + INT	10,000 - O O O O O O O O O O O O O O O O O
ALL VALUES 108 [SEASONAL RELATIONS NOT DETE		1,000
THEY ARE NOT DIFFERENT FROM ON	-	
GROWING SEASON 79 NONGROWING SEASON 29	ND ND	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF		100 100 1,000
75 PERCENT 25 PER	CENT	STREAMFLOW, IN CUBIC FEET PER SECOND

CONCENTRATION				
LOW FLOW			HIGH FLOW	
O U	NCENSORE	VALUE	⊕	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$	
△ 'GF	REATER-THA	N' VALUE	■ ▲	
TREN	DS IN CONC	ENTRAT	ION	
VALUES	NVALUES	NWYS	SLOPE	
LOW FLOW	24	12	ND	
HIGH FLOW	30	16	0	



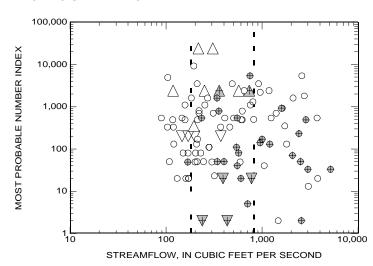
RELATION OF CONCENTRATION TO STREAMFLOW


CONCE	ENTRATION		
GROWING SEASON	NONGR	OWING SE	ASON
O UNCENS	ORED VALUE		
√ 'LESS-T	HAN' VALUE	\forall	
△ 'GREATER	-THAN' VALUE	· A	
RELATION: LOG(CONC)) = SLOPE*LOC	G(FLOW) +	INT
VALUES	NVALUES	SLOPE	INT
ALL VALUES	105	0	ND
[SEASONAL RELATI	ONS NOT DET	ERMINED;	
THEY ARE NOT DIFFER	ENT FROM ON	NE ANOTHE	ER]
GROWING SEASON	80	ND	ND
NONGROWING SEASON	25	ND	ND
STREAMFL	OW EXCEEDE	D	
INDICATED PER	RCENTAGE OF	TIME	

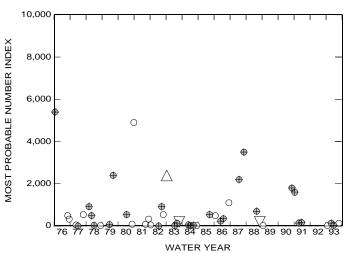
- - 25 PERCENT

75 PERCENT

	CONCENTRATION				
<u>L</u>	OW FLOW			HIGH FLOW	
	O UI	NCENSORE	D VALUE	Φ	
	7	LESS-THAN'	VALUE	$\overline{\Psi}$	
	△ 'GF	REATER-THA	N' VALUE	■ ▲	
	TREN	DS IN CONC	ENTRAT	ION	
	VALUES	NVALUES	NWYS	SLOPE	
	LOW FLOW	20	11	ND	
	HIGH FLOW	38	15	-819	


RELATION OF CONCENTRATION TO STREAMFLOW

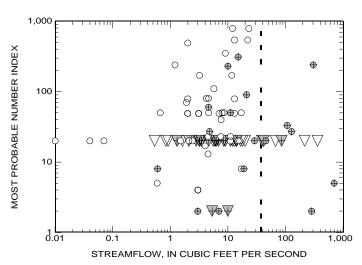
CONCENTRATION				
GROWING SEASON NONGROWING SEASON				
O UNCENSO	DRED VALUE	⊕		
√ 'LESS-TI	HAN' VALUE	\forall		
△ 'GREATER	-THAN' VALUE	\triangle		
RELATION: LOG(CONC)	= SLOPE*LOG	(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	105	0	ND	
[SEASONAL RELA	TIONS DETER	MINED;		
THEY ARE DIFFEREN	T FROM ONE	ANOTHER]		
GROWING SEASON	75	0	ND	
NONGROWING SEASON	30	0	ND	
STREAMFLOW EXCEEDED				


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

75 PERCENT

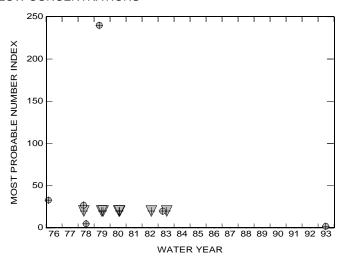
	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSOREI	D VALUE	⊕
\triangle ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	20	12	ND
HIGH FLOW	27	15	0



RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON NONGROWING SEAS				
O UNCENS	SORED VALUE	⊕		
√ 'LESS-1	ΓHAN' VALUE	$\overline{\Psi}$		
	R-THAN' VALUE	<u> </u>		
RELATION: LOG(CONC) = SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	104	0	ND	
[SEASONAL REL	ATIONS DETER	MINED;		
THEY ARE DIFFERE	NT FROM ONE	ANOTHER:	l	
GROWING SEASON	65	0	ND	
NONGROWING SEASON	39	0	ND	
STREAMFLOW EXCEEDED				
INDICATED PE	RCENTAGE OF	TIME		

- - 25 PERCENT


75 PERCENT

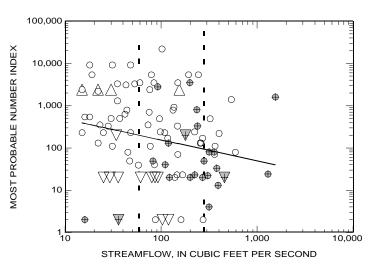
TRENDS IN LOW- AND HIGH-FLOW CONCENTRATIONS

	00.102.111		
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	O VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	0	0	ND
HIGH FLOW	13	7	ND

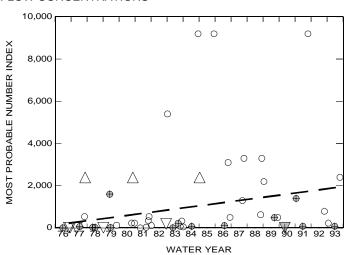
CONCENTRATION

APPENDIX 18. Relations of constituent concentration and load to streamflow and trends in concentration with time FECAL COLIFORM BACTERIA 01387500 RAMAPO RIVER NEAR MAHWAH, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

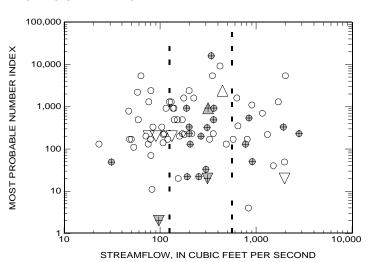
CON	CONCENTRATION			
GROWING SEASON	NONGR	OWING SE	EASON	
UNCE	NSORED VALUE	•		
'LESS	S-THAN' VALUE	\forall		
△ 'GREAT	ER-THAN' VALUE	<u> </u>		
RELATION: LOG(COI	NC) = SLOPE*LO	3(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	100	-0.49	3.17	
[SEASONAL RE	ELATIONS DETER	RMINED;		
THEY ARE DIFFER	RENT FROM ONE	ANOTHER	!]	
GROWING SEASON	76	0	ND	
NONGROWING SEASON	24	0	ND	


STREAMFLOW EXCEEDED

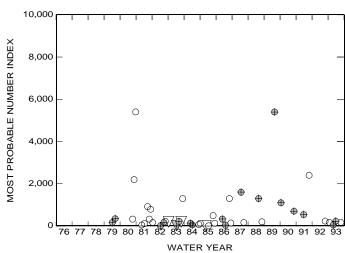
INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
 LOW FLOW	35	16	101
HIGH FLOW	15	11	ND


RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON NONGROWING SEASON				
O UNCENS	SORED VALUE			
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$		
△ 'GREATE	R-THAN' VALUE	<u> </u>		
RELATION: LOG(CONC	C) = SLOPE*LOC	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	80	0	ND	
[SEASONAL RELAT	IONS NOT DET	ERMINED;		
THEY ARE NOT DIFFEI	RENT FROM ON	NE ANOTHE	ER]	
GROWING SEASON	59	ND	ND	
NONGROWING SEASON	21	ND	ND	
NONGROWING SEASON	21	ND	ND	


STREAMFLOW EXCEEDED

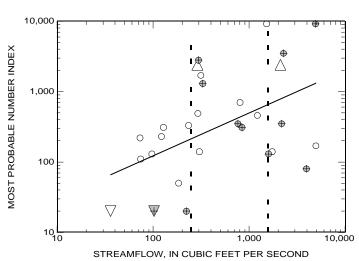
INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

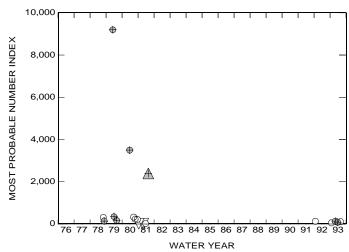
	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSORE	O VALUE	⊕
▽ ,	LESS-THAN	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	27	12	ND
HIGH FLOW	18	11	ND

APPENDIX 18. Relations of constituent concentration and load to streamflow and trends in concentration with time FECAL COLIFORM BACTERIA 01389500 PASSAIC RIVER AT LITTLE FALLS, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]


RELATION OF CONCENTRATION TO STREAMFLOW

	CONCENTRATION			
	GROWING SEASON	NONGE	ROWING SE	EASON
	O UNCENS	SORED VALUE	Φ	
	√ 'LESS-	THAN' VALUE	$\overline{\Psi}$	
	△ 'GREATE	R-THAN' VALUI	E A	
	RELATION: LOG(CONC	C) = SLOPE*LO	G(FLOW) +	INT
	VALUES	NVALUES	SLOPE	INT
_	ALL VALUES	29	0.61	0.87
	[SEASONAL RELAT	TONS NOT DET	TERMINED;	
	THEY ARE NOT DIFFEI	RENT FROM O	NE ANOTH	ER]
	GROWING SEASON	18	ND	ND
	NONGROWING SEASON	11	ND	ND

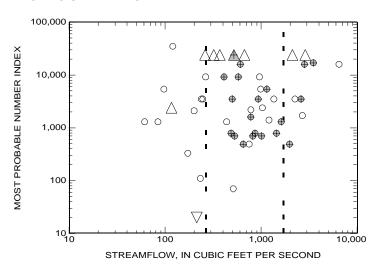

STREAMFLOW EXCEEDED

INDICATED PERCENTAGE OF TIME

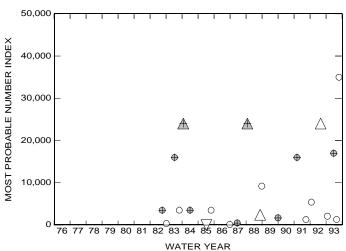
75 PERCENT - 25 PERCENT

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
O U	NCENSOREI	D VALUE	Φ
∇ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	10	5	ND
HIGH FLOW	8	5	ND

RELATION OF CONCENTRATION TO STREAMFLOW


CONCENTIATION				
GROWING SEASON NONGROWING SEA				
O UNCENSO	DRED VALUE	⊕		
√ 'LESS-TH	HAN' VALUE	\forall		
△ 'GREATER-	-THAN' VALUE	<u> </u>		
RELATION: LOG(CONC)	= SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	50	0	ND	
[SEASONAL RELATIONS NOT DETERMINED;				
THEY ARE NOT DIFFERE	ENT FROM ON	NE ANOTHE	ER]	
GROWING SEASON	30	ND	ND	
NONGROWING SEASON	20	ND	ND	

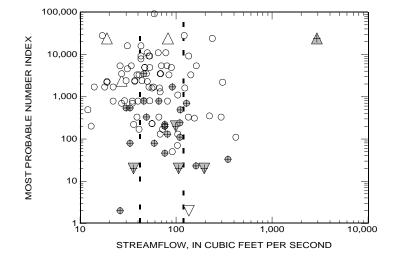
CONCENTRATION


STREAMFLOW EXCEEDED

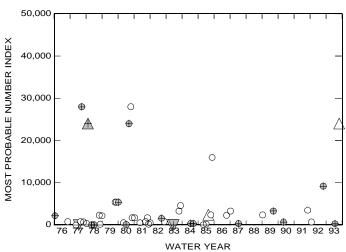
INDICATED PERCENTAGE OF TIME

75 PERCENT - 25 PERCENT

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
O UI	NCENSORE	D VALUE	Φ
7	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	13	7	ND
HIGH FLOW	9	8	ND

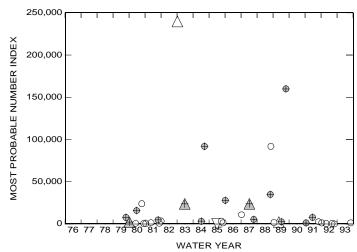

RELATION OF CONCENTRATION TO STREAMFLOW

CONCENTRATION				
GROWING SEASON NONGROWING SEASON				
O UNCENS	ORED VALUE	⊕		
√ 'LESS-T	HAN' VALUE	$\overline{\Psi}$		
△ 'GREATER	-THAN' VALUE	<u> </u>		
RELATION: LOG(CONC)	= SLOPE*LOG	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
ALL VALUES	107	0	ND	
[SEASONAL RELA	TIONS DETER	MINED;		
THEY ARE DIFFEREN	IT FROM ONE	ANOTHER:	l	
GROWING SEASON	81	0	ND	
NONGROWING SEASON	26	0	ND	
STREAMFLOW EXCEEDED				


INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

75 PERCENT


	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
Ο υ	NCENSOREI	D VALUE	
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	34	15	0
HIGH FLOW	18	12	0

RELATION OF CONCENTRATION TO STREAMFLOW

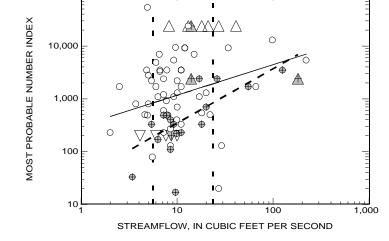
CONCENTRATION	1,000,000
GROWING SEASON NONGROWING SEASON	
○ UNCENSORED VALUE ♥ ○ 'LESS-THAN' VALUE ▼ ○ 'GREATER-THAN' VALUE ★	100,000 DO TO TO TO TO TO TO TO TO TO TO TO TO TO
RELATION: LOG(CONC) = SLOPE*LOG(FLOW) + INT VALUES NVALUES SLOPE INT	10,000 - 10,
———— ALL VALUES 72 0.79 2.61 [SEASONAL RELATIONS DETERMINED; THEY ARE DIFFERENT FROM ONE ANOTHER]	1,000 O O O O O O O O O O O O O O O O O O
— GROWING SEASON 55 0.78 2.83	₩ • •
NONGROWING SEASON 17 0 ND	# 100
STREAMFLOW EXCEEDED INDICATED PERCENTAGE OF TIME	10 100 1,000
75 PERCENT 25 PERCENT	STREAMFLOW, IN CUBIC FEET PER SECOND

CONCENTRATION			
LOW FLOW			HIGH FLOW
O UI	NCENSORE	VALUE	+
וי 🗸	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GR	EATER-THA	N' VALUE	A
TREN	DS IN CONC	ENTRATI	ON
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	20	9	ND
HIGH FLOW	14	9	ND

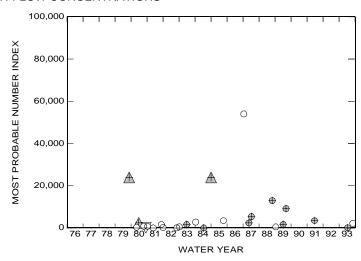
APPENDIX 18. Relations of constituent concentration and load to streamflow and trends in concentration with time FECAL COLIFORM BACTERIA 01394500 RAHWAY RIVER NEAR SPRINGFIELD, N.J.

[NVALUES, number of values; LOG, base-10 logarithm; CONC, concentration in indicated units; INT, intercept; FLOW, streamflow in cubic feet per second; NWYS, number of water years during which at least one measurement was made; a slope value of '0' indicates that the slope is not significantly different from zero; ND, not determined; CaCO3, calcium carbonate; C, carbon; N, nitrogen; P, phosphorus; Pb, lead; B, boron; Cl, chloride; Na, sodium; MOST PROBABLE NUMBER INDEX is per 100 milliliters]

RELATION OF CONCENTRATION TO STREAMFLOW


100,000

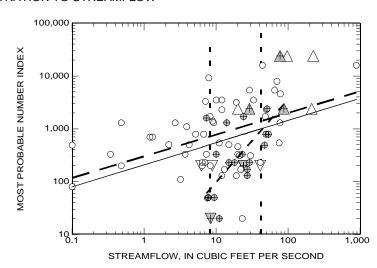
CONCENTRATION				
GROWING SEASON	NONGF	ROWING SE	EASON	
O UNCEN	SORED VALUE	Φ		
√ 'LESS-	THAN' VALUE	$\overline{\Psi}$		
△ 'GREATE	R-THAN' VALUE	■ ▲		
RELATION: LOG(CON	C) = SLOPE*LO	G(FLOW) +	INT	
VALUES	NVALUES	SLOPE	INT	
 ALL VALUES	83	0.58	2.49	
[SEASONAL REL	ATIONS DETER	RMINED;		
THEY ARE DIFFERE	ENT FROM ONE	ANOTHER	?]	
GROWING SEASON	62	0	ND	
 NONGROWING SEASON	21	1.03	1.51	
STREAMF	LOW EXCEEDE	D		


75 PERCENT

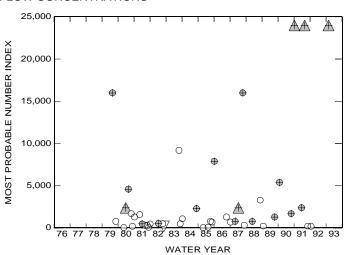
INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

	CONCENTR	ATION	
LOW FLOW			HIGH FLOW
O и	NCENSORE	D VALUE	⊕
▽ ,	LESS-THAN'	VALUE	$\overline{\Psi}$
△ 'GF	REATER-THA	N' VALUE	■ ▲
TREN	DS IN CONC	ENTRAT	ION
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	14	9	ND
HIGH FLOW	12	10	ND


RELATION OF CONCENTRATION TO STREAMFLOW

	CONCENTRATION			
GROWING SEASON	100	NONGROWING SE		
, 'L	ICENSORED VAL LESS-THAN' VALU EATER-THAN' VA	JE \\		
RELATION: LOG(CONC) = SLOPE*	LOG(FLOW) -	+ INT	
VALUES	NVALUE	S SLOPE	INT	
ALL VALUES	83	0.42	2.32	
[SEASONA	L RELATIONS DE	TERMINED;		
THEY ARE DIF	FERENT FROM C	NE ANOTHE	R]	
— GROWING SEASON	59	0.41	2.48	
NONGROWING SEAS	SON 24	1.57	0.42	
STRE	EAMFLOW EXCE	EDED		


75 PERCENT

INDICATED PERCENTAGE OF TIME

- - 25 PERCENT

CONCENTRATION			
LOW FLOW			HIGH FLOW
<u> </u>	NCENSORE	D VALUE	<u>+</u>
√ 'LESS-THAN' VALUE			
△ 'GREATER-THAN' VALUE A A A A B C A B C C C C C C C C C C C C			
TRENDS IN CONCENTRATION			
VALUES	NVALUES	NWYS	SLOPE
LOW FLOW	26	13	ND
HIGH FLOW	18	12	ND

